


初中数学第二十章 函数综合与测试课时训练
展开
这是一份初中数学第二十章 函数综合与测试课时训练,共24页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图中表示y是x函数的图象是( )A. B.C. D.2、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠03、在函数中,自变量x的取值范围是( )A. B. C. D.4、如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )A. B.C. D.5、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中,洗衣机内的水量(升)与浆洗一遍的时间(分)之间的关系的图象大致为( )A. B.C. D.6、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.207、如图所示各图中反映了变量y是x的函数是( )A. B.C. D.8、从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是( )v(m/s)25155﹣5t(s)0123A.v=25t B.v=﹣10t+25 C.v=t2+25 D.v=5t+109、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )A.30km/h B.60km/h C.70km/h D.90km/h10、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).A. B. C.4 D.8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、指出下列事件过程中的常量与变量.(1)某水果店橘子的单价为5元/千克,买a千克橘子的总价为m元,其中常量是_____,变量是_____;(2)周长C与圆的半径r之间的关系式是C=2πr,其中常量是_____,变量是_____;注意:π是一个确定的数,是常量2、已知函数,当时,_______;当时,_______.3、小红参加一次象棋比赛,规定胜一局得2分,平一局得1分,负一局得0分,她一共比赛了20局,得了30分,设她胜了x局,平了y局,则y与x之间的函数关系式是______,其中x的取值范围是______.4、如图1,在△ABC中,AB>AC,D是边BC上的动点.设B,D两点之间的距离为x,A,D两点之间的距离为y, 表示 y与x的函数关系的图象如图2所示.线段AC的长为_________________,线段AB的长为____________.5、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,若两人之间保持的距离不超过4km时,能够用无线对讲机保持联系,则甲、乙两人总共有________h可以用无线对讲机保持联系.三、解答题(5小题,每小题10分,共计50分)1、如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明从菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?2、如图,中,,,.点P是射线CB上的一点(不与点B重合),EF是线段PB的垂直平分线,交PB与点F,交射线AB与点E,联结PE、AP.(1)求的度数;(2)当点P在线段CB上时,设,的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)如果,请直接写出的面积.3、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);01.02.03.04.05.06.07.08.06.35.4 3.7 2.52.42.73.3(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当取最小值时,的值约为 .(结果保留一位小数)②当是等腰三角形时,的长度约为 .(结果保留一位小数)4、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数的性质及其应用的部分过程.请按要求完成下列各小题.(1)请把表补充完整,并在给出的图中补全该函数的大致图像;(2)请根据这个函数的图像,写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(近似值保留一位小数,误差不超过0.2)……-5-4-3-202345…………-14 …… -参考答案-一、单选题1、C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示y是x函数的图象是C.故选:C.【点睛】理解函数的定义,是解决本题的关键.2、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.3、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知∴故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.4、B【解析】【分析】根据容器的形状可知当液面高度越高时,体积的变化越小,即随着的增大,增大的速度变缓,结合选项即可求解【详解】解:容器的形状可知,底部最大,刚开始当增大时,体积增大较快,但随着的增大,增大的速度变缓,表现出的函数图象即为:函数图象先陡,后缓,结合选项只有B选项符合题意;故选B【点睛】本题考查了函数图象的判断,根据容器的形状以及题意判断函数图象先陡,后缓是解题的关键.5、B【解析】【分析】根据洗衣机内水量开始为0,注水后水量变多,清洗时水量不变,排水时水量变小,直到水量变为0;由此即可得到答案.【详解】解:解:因为洗衣机工作前洗衣机内无水,所以A,C两选项不正确,被淘汰;又因为洗衣机最后排完水,所以D选项不正确,被淘汰,所以选项B正确.故选:B.【点睛】本题考查了对函数图象的理解能力.解题关键是看函数图象要理解两个变量的变化情况.6、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.7、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.8、B【解析】【分析】根据表格中的数据,把对应的数据代入函数关系式中进行求解即可得到答案.【详解】解:A、当时,,不满足,故此选项不符合题意;B、当时,,满足,当时,,满足,当时,,满足,当时,,满足,故此选项符合题意;C、当时,,不满足,故此选项符合题意;D、当时,,不满足,故此选项符合题意;故选B.【点睛】本题主要考查了用表格表示变量间的关系,解题的关键在于能够熟练掌握用表格表示变量间的关系.9、B【解析】【分析】直接观察图象可得出结果.【详解】解:根据函数图象可知:t=1时,y=90;∵汽车是从距离某城市30km开始行驶的,∴该汽车行驶的速度为90-30=60km/h,故选:B.【点睛】本题主要考查了一次函数的图象,正确的识别图象是解题的关键.10、A【解析】【分析】输入,则有;输入,则有,将代数式的值代入求解即可.【详解】解:输入,则有;输入,则有;故选A.【点睛】本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.二、填空题1、 5 a,m; 2,π C,r【解析】略2、 3 【解析】【分析】分别将和代入解析式,即可求解.【详解】解:当时,;当时, ,解得: .故答案为:3; .【点睛】本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.3、 且x为自然数【解析】【分析】根据题意,由得分可得出答案.分2种情况,第一种是小红全胜,第二种根据得分,小红胜、平局存在,由方程组解出答案.【详解】解:①设小红胜了x局,平了y局,则负(20-x-y)局,由题意得:2x+y+0×(20-x-y)=30,2x+y=30,y=30-2x.②小红全胜,由题意得:30÷2=15根据得分,小红胜、平局存在,由题意得:,解得.故答案为:①y=30−2x,②10≤x≤15且x为自然数.【点睛】本题考查了根据题意列出一次函数关系式,做题的关键是弄清题意之间的等量关系.4、 【解析】【分析】从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,进而求解.【详解】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,,则,在Rt△ABH中,,故答案为:,.【点睛】本题考查的是动点问题的函数图象,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5、【解析】【分析】根据题意可得A、B两地的距离为40千米;从而得到甲的速度为10千米/时,乙的速度为 20千米/时;然后设x小时后,甲、乙两人相距4km,可得到当 或 时,甲、乙两人可以用无线对讲机保持联系,即可求解.【详解】解:根据题意得:当x=0时,甲距离B地40千米,∴A、B两地的距离为40千米;由图可知,甲的速度为40÷4=10千米/时,乙的速度为40÷2=20千米/时;设x小时后,甲、乙两人相距4km,若是相遇前,则10x+20x=40-4,解得:x=1.2;若是相遇后,则10x+20x=40+4,解得: ;若是到达B地前,则10x-20(x-2)=4,解得:x=3.6∴当 或 时,甲、乙两人可以用无线对讲机保持联系,即甲、乙两人总共有 可以用无线对讲机保持联系.故答案为:【点睛】本题主要考查了函数图象,能够从图形获取准确信息是解题的关键.三、解答题1、(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了10分钟;(2)0.9千米,12分钟;(3)18分钟;(4)2千米,4.8千米/小时【解析】【分析】观察函数图象得到小明用15分钟从家去菜地,浇水用了10分钟,又去离家2千米的玉米地,锄草用了18分钟,然后用了25分钟回家.【详解】解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地 2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.2、(1);(2),定义域为:;(3)当点P在线段CB上时,,当点P在线段CB延长线上时,.【解析】【分析】(1)由题意及勾股定理逆定理可得,取BC的中点H,连接AH,则有,然后可得,则有,最后问题可求证;(2)过A作,垂足为点D,根据含30度直角三角形的性质可得,,然后根据勾股定理可得,进而根据三角形面积公式可进行求解;(3)由题意可分①当点P在线段CB上时,②当点P在线段CB延长线上时,然后分类求解即可.【详解】(1)解:∵中,,,,∴,.∴,∴.∵中,,,∴.取BC的中点H,连接AH,如图所示:∴,,∴,∴△AHC是等边三角形,∴,∴.(2)过A作,垂足为点D.中,∵,,∴.同理:.中,,∴,∴.∴,,∴,∴所求函数解析式为,∵点P在线段CB上,且不与点B重合,∴,∴定义域为:.(3)当时,①当点P在线段CB上时,由(2)可知:,②当点P在线段CB延长线上时,过A作,垂足为点M.如图所示:∵,,,∴,∴,∴,∴.【点睛】本题主要考查含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理,熟练掌握含30度直角三角形的性质、勾股定理及直角三角形斜边中线定理是解题的关键.3、故答案为:0.0【点睛】本题考查函数图象的应用,是基础考点,掌握相关知识是解题关键.8.(1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x及y的值,由此得到答案.(1)解:通过取点、画图、测量可得时,,时,,故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当取最小值时,的值约为;②当是等腰三角形时,有两种情况,如图:时,,,由函数图象得,时,,当是等腰三角形时,的长度约为3.3或.故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.4、【解析】【分析】由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).【详解】解:由题意得,=80,所以,y=80-2x,由于三角形两边之和大于第三边,且边长大于0,所以,解得,所以.【点睛】本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.5、(1)见解析;(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔(3)或【解析】【分析】(1)由题意利用函数解析式分别求出对应的函数值即可;进而利用描点法画出图象即可;(2)根据题意观察图象可知该函数图象的增减性,以此进行分析即可;(3)根据题意直接利用图象即可解决问题.【详解】解:(1)…-5-4-3-202345……-1421… 补全图象如下:(2)当时,随的增大而增大﹔当时,随的增大而减小﹔当时,随的增大而减小﹔(3)由图象可知不等式的解集为:或.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试精练,共22页。试卷主要包含了下列图象表示y是x的函数的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共23页。试卷主要包含了小明家等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共21页。试卷主要包含了小斌家等内容,欢迎下载使用。
