![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系综合测试试题第1页](http://img-preview.51jiaoxi.com/2/3/12765710/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系综合测试试题第2页](http://img-preview.51jiaoxi.com/2/3/12765710/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系综合测试试题第3页](http://img-preview.51jiaoxi.com/2/3/12765710/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共25页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限2、已知点和点关于轴对称,则的值为( )A.1 B. C. D.3、下列命题中,是真命题的有( )①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤4、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)5、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为( )A. B. C. D.6、点在第( )象限.A.一 B.二 C.三 D.四7、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向8、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )A. B. C. D.9、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)10、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,点A(-3,0),B(3,0),C(3,2),如果△ABC与△ABD全等,那么点D的坐标可以是____(写出一个即可).2、若点在x轴上,写出一组符合题意的m,n的值______.3、请将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式__.4、经过点Q(0,1)且平行于x轴的直线可以表示为直线_________.5、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)△ABC是 三角形,理论依据 .2、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积.3、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.4、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.5、如图,在平面直角坐标系中,描出点、、.(1)在平面直角坐标系中画出,则的面积是 ;(2)若点D与点C关于y轴对称,则点D的坐标为 ;(3)求线段OC的长;(4)已知P为x轴上一点,若的面积为4,求点的坐标. -参考答案-一、单选题1、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.3、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.4、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.5、B【解析】【分析】根据已知点坐标确定直角坐标系,即可得到答案.【详解】由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为.故选:.【点睛】此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.6、D【解析】【分析】第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.【详解】解:点在第四象限.故选:D.【点睛】本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.7、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.8、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.9、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.10、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.二、填空题1、(3,-2)(答案不唯一)【解析】【分析】如图,把沿轴对折可得 再根据的位置确定其坐标即可.【详解】解:如图,把沿轴对折可得:则 同理:把,关于轴对折,可得: 综上:的坐标为:或或故答案为:或或(任写一个即可)【点睛】本题考查的是轴对称的性质,三角形全等的性质,坐标与图形,熟练的利用轴对称确定全等三角形的对应顶点是解本题的关键.2、(答案不唯一)【解析】【分析】根据轴上点的坐标特点,纵坐标为0,即可求解.【详解】解:根据轴上点的坐标特点,纵坐标为零即可,即,取,即在x轴上,故答案是:(答案不唯一).【点睛】本题考查了轴上点的坐标特点,解题的关键是掌握在轴上点的坐标的纵坐标为0.3、如果一个点在坐标轴上,那么这个点至少有一个坐标为0【解析】【分析】命题是由题设与结论两部分组成,如果后面的是题设,那么后面的是结论,根据定义直接改写即可.【详解】解:将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.故答案为:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.【点睛】本题考查的命题的组成,把一个命题改写成“如果那么”的形式,平面直角坐标系坐标轴上点的坐标特点,掌握“命题是由题设与结论两部分组成”是解本题的关键.4、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点Q(0,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点Q(0,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1,故答案为:y=1.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点纵坐标相等,平行于y轴的直线上所有点横坐标相等.5、【解析】【分析】过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C作 轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴ ,∴BD=CD=2,∴OD=OB+BD=3,∴点,将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,∵ ,∴第2021次旋转结束时,点C的坐标为.故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.三、解答题1、(1)见解析;(2)图见解析,C'的坐标为(﹣5,5);(3)直角;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【解析】【分析】(1)根据点A及点C的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据关于y轴对称的点的坐标,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;【详解】解:(1)如图所示: (2)如图所示:△A'B'C'即为所求: C'的坐标为(﹣5,5); (3)直角三角形,∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.依据:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【点睛】本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.2、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.3、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【解析】【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、 (1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.5、 (1)画图见解析,4;(2)(-4,3);(3)5;(4)(10,0)或(-6,0)【解析】【分析】(1)根据A、B、C三点的坐标,在坐标系中描出A、B、C,然后顺次连接A、B、C即可得到答案;然后根据△ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;(3)过C点作轴于点D,则,,由勾股定理求解即可.(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.(1)解:如图所示,△ABC即为所求;,故答案为:4;(2)解:∵点D与点C关于y轴对称,点C的坐标为(4,3),∴点D的坐标为(-4,3),故答案为:(-4,3);(3)解:连接OC,过C点作轴于点D,则.,,,在中,,,,,(4)解:∵为x轴上一点,∴可设P点坐标为(m,0),∴,∵的面积为4,∴∴或,∴或,∴P点坐标为(10,0)或(-6,0).【点睛】本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共25页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共24页。试卷主要包含了若点P,下列各点中,在第二象限的点是,下列命题中,是真命题的有等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)