初中冀教版第十九章 平面直角坐标系综合与测试精练
展开
这是一份初中冀教版第十九章 平面直角坐标系综合与测试精练,共23页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系中,已知点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,且点A、B的坐标分别为,则长是( )A. B.5 C.4 D.32、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.3、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.4、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)5、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是( )A. B. C. D.6、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、若点在第三象限内,则m的值可以是( )A.2 B.0 C. D.9、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.10、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.2、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______3、请将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式__.4、已知点是第二象限的点,则的取值范围是______.5、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点,,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C.(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;(2)若点P是y轴上的动点,连接PD.①如图(1),当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标.2、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)4、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.5、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标. -参考答案-一、单选题1、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A(-1,0),B(0,2),∴OA=1,OB=2,∵△AOB≌△CDA,∴OB=AD=2,∴OD=AD+AO=2+1=3,故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.2、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.4、D【解析】【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.【详解】解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.5、C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解【详解】解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,,,点A的坐标是,故选:C.【点睛】本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.7、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.8、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,∴m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.10、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.二、填空题1、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作,∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.2、【解析】【分析】作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.【详解】作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示由对称的性质得:PB=PC∴AB+PA+PB=AB+PA+PC≥AB+AC即当点P在AC上时,周长最小,且最小值为AB+AC由勾股定理得:,∴周长最小值为故答案为:【点睛】本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.3、如果一个点在坐标轴上,那么这个点至少有一个坐标为0【解析】【分析】命题是由题设与结论两部分组成,如果后面的是题设,那么后面的是结论,根据定义直接改写即可.【详解】解:将命题“坐标轴上的点至少有一个坐标为0”改写成“如果那么”的形式:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.故答案为:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.【点睛】本题考查的命题的组成,把一个命题改写成“如果那么”的形式,平面直角坐标系坐标轴上点的坐标特点,掌握“命题是由题设与结论两部分组成”是解本题的关键.4、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.5、(4,﹣2)【解析】【分析】由题意根据炮的坐标建立平面直角坐标系,然后写出马的坐标即可.【详解】解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查坐标确定位置,准确确定出坐标原点的位置是解题的关键.三、解答题1、 (1) (2)①S△PEC=S△ECD,理由见解析;②点P坐标为(0,5)或(0,).【解析】【分析】(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;(2)①先求出PF=2,再用三角形的面积公式得出S△PEC=CE,S△ECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.(1)解:将AB向下平移5个单位得线段CD, 线段AB平移到CD扫过的面积为: 故答案为:(2)①如图1,过P点作PF⊥AC于F,由平移知,轴,∵A(2,4),∴PF=2,由平移知,CD=AB=4,∴S△PEC=CE•PF=CE×2=CE,S△ECD=CE•CD=CE×4=2CE,∴S△ECD=2S△PEC,即:S△PEC=S△ECD;②(ⅰ)如图2,当PD交线段AC于E,且PD将四边形ACDB分成面积为2:3两部分时,连接PC,延长DC交y轴于点M,则M(0,﹣1),∴OM=1,连接AC,则S△ACD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△CDE=S矩形ABDC=×20=8,由①知,S△PEC=S△ECD=×8=4,∴S△PCD=S△PEC+S△ECD=4+8=12,∵S△PCD=CD•PM=×4PM=12,∴PM=6,∴PO=PM﹣OM=6﹣1=5,∴P(0,5).(ⅱ)如图3,当PD交AB于点F,PD将四边形ACDB分成面积为2:3两部分时,连接PB,延长BA交y轴于点G,则G(0,4),∴OG=4,连接AC,则S△ABD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△BDE=S矩形ABDC=×20=8,∵S△BDE=BD•BE=×5BE=8,∴BE=过P点作PH⊥BD交DB的延长线于点H,∵B(6,4),∴PH=6S△PDB=BD×PH=×5×6=15,∴S△PBE=S△PDB﹣S△BDE=15﹣8=7,∵S△PBE=BE•PG=PG=7,∴PG=,∴PO=PG+OG=+4=,∴P(0,),即:点P坐标为(0,5)或(0,).【点睛】此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.2、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.3、 (1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.4、 (1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.5、 (1)见解析(2)A1(1,5),B1(1,0),C1(4,3)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(1)解:所作图形△A1B1C1如下所示:(2)解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试一课一练,共29页。试卷主要包含了在平面直角坐标系xOy中,点A,如图是象棋棋盘的一部分,如果用,下列命题中为真命题的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共29页。试卷主要包含了如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试当堂检测题,共29页。试卷主要包含了下列命题中为真命题的是,点关于轴对称点的坐标为等内容,欢迎下载使用。