搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)

    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第1页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第2页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系专题测试试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十九章 平面直角坐标系综合与测试课时作业

    展开

    这是一份初中第十九章 平面直角坐标系综合与测试课时作业,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)2、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)3、已知点Am,2)与点B(1,n)关于y轴对称,那么m+n的值等于(  )A.﹣1 B.1 C.﹣2 D.24、在一次“寻宝”游戏中,寻宝人已经找到两个标志点,并且知道藏宝地点的坐标是,则藏宝处应为图中的(       A.点 B.点 C.点 D.点5、若y轴负半轴上的点Px轴的距离为2,则点P的坐标为(  )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)6、在平面直角坐标系中,点A的坐标为(﹣4,3),若ABx轴,且AB=5,当点B在第二象限时,点B的坐标是(  )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是(  )A. B.C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)8、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是(  )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)9、若点P位于平面直角坐标系第四象限,且点Px轴的距离是1,到y轴的距离是2,则点P的坐标为(          A. B. C. D.10、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为_________.2、将点Pm+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点Amn)坐标为_________.3、若点与点关于x轴对称,则mn=______.4、5在平面直角坐标系xOy中,对于点Pxy),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3A3的伴随点为A4…,这样依次得到点A1A2A3,…,An,…,若点A1的坐标为(3,1),则点A3的坐标为__;若点A1的坐标为(ab),且ab均为整数,对于任意的正整数n,点An均在x轴上方,则点A1的坐标为__.5、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的(2)再请你画出将沿x轴翻折后得到的(3)若连接,请你直接写出四边形的面积.2、在平面直角坐标系中,点A(a,0),点B(0,b),已知ab满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BFx轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点EAB于点PMEP延长线上一点,且,连接MO,作ONBA的延长线于点N,连接MN,求点N的坐标.3、如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出ABC 关于 y 轴对称的A1B1C1(2)写出 A1B1C1 的坐标(直接写出答案),A1     B1     C1       (3)A1B1C1 的面积为     4、在平面直角坐标系xoy中,ABC如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH5、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______. -参考答案-一、单选题1、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2、A【解析】【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.3、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出mn的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.4、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.5、D【解析】【分析】Py轴上则该点横坐标为0,据此解答即可.【详解】y轴负半轴上的点Px轴的距离为2,∴点P的坐标为(0,﹣2).故选:D【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.6、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:轴,,点B在第二象限,B一定在点A的左侧,且两个点纵坐标相同,,即故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.7、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.8、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A,则点关于轴的对称点坐标是故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.9、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.10、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.二、填空题1、【解析】【分析】表示教室里第1列第2排的位置,可得教室里第2列第3排的位置的表示方法,从而可得答案.【详解】解: 表示教室里第1列第2排的位置, 教室里第2列第3排的位置表示为: 故答案为:【点睛】本题考查的是利用有序实数对表示位置,理解题意,理解有序实数对的含义是解本题的关键.2、(1,0)【解析】3、3【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点Pxy)关于x轴的对称点P′的坐标是(x,-y),进而得出mn的值,再代入所求式子计算即可.【详解】∵点与点关于x轴对称mn=3故答案为:3.【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键.4、     (﹣3,1)     (0,1)【解析】【分析】(1)根据“伴随点”的定义依次求出 ;(2)再写出点A1ab)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【详解】(1)解:∵A1的坐标为(3,1),A2的横坐标为﹣1+1=0,纵坐标为3+1=4,A2(0,4),A3的横坐标为﹣4+1=﹣3,纵坐标为0+1=1,A3(﹣3,1),故答案为:(﹣3,1);(2)解∵点A1的坐标为(ab),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4b﹣1,﹣a+1),A5ab),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点An均在x轴上方,解得﹣1<a<1,0<b<2,ab均为整数,a=0,b=1,A1的坐标为(0,1),故答案为(0,1).【点睛】本题考查对新定义的理解和运用,以及考察解不等式组,能够对新定义的快速理解和运用是解决本题的关键.5、(【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵228=26,A22A6的位置在第三象限,且在经过点A2M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A2M的解析式为y=x+3,A22点在直线y=x+3上,第二个等腰直角三角形的边长为…,n个等腰直角三角形的边长为(n-1∴第22个等腰直角三角形的边长为(21,可得A22M=(21A21 A1=+1,A22 的横坐标为:A22 的纵坐标为:A22),故答案为:().【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.三、解答题1、(1)见解析;(2)见解析;(3)16【解析】【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2B2C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.2、(1);(2)D(-1,0),F(-2,4);(3)N(-6,2)【解析】【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得;结合坐标的性质分析,即可得到答案;(2)如图,过点FFHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQONOM的延长线于点QNGPNEM的延长线于点G,再分别过点Q和点NQREG于点RNSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.【详解】(1)∵(2)如图,过点FFHAO于点HAFAE∴∠FHA=∠AOE=90°, ∴∠AFH=∠EAO又∵AF=AE AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BOFH=BO HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQONOM的延长线于点QNGPNEM的延长线于点G,再分别过点Q和点NQREG于点RNSEG于点S ∴等腰NQ=NONGPN, NSEG ∵点E为线段OB的中点 ∴等腰NG=NP ∴∠QNG=∠ONP ∴∠NGQ=∠NPOGQ=POPO=PB∴∠POE=∠PBE=45°∴∠NPO=90°∴∠NGQ=90°∴∠QGR=45°. QR=OE QM=OM.NQ=NONMOQ∴等腰 NS=EM=4,MS=OE=2N(-6,2).【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.3、 (1)见解析(2)(-1,2),(-3,1),(2,-1)(3)4.5【解析】【分析】(1)根据网格结构找出点ABC的对应点A1B1C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.(1)A1B1C1如图所示;(2)根据图形得,A1(-1,2),B1(-3,1),C1(2,-1),故答案为:(-1,2),(-3,1),(2,-1);(3)A1B1C1的面积=5×3-×1×2-×2×5-×3×3,=15-1-5-4.5,=15-10.5,=4.5.故答案为:4.5【点睛】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.4、(1)见解析;(2)见解析【解析】【分析】(1)过点BMQx轴,过点AAMMQ于点M,过点NNQMQ于点Q,连接BN,连接ANBC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQAC于点H,则BH即为△ABC的高.过点BBGx轴于点G,过点AADx轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点BMQx轴,过点AAMMQ于点M,过点NNQMQ于点Q,连接BN,连接ANBC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQAB=BN,∠ABM=∠BNQ∴∠BAP=∠BNP∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQAC于点H,则BH即为△ABC的高.理由如下:过点BBGx轴于点G,过点AADx轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG∴∠ACD=∠QBG∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,BHAC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.5、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点Bx轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点By轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)=8=ADOF=8,OF=4,又∵点Fy轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共25页。试卷主要包含了已知点和点关于轴对称,则的值为等内容,欢迎下载使用。

    初中冀教版第十九章 平面直角坐标系综合与测试课时作业:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试课时作业,共27页。试卷主要包含了若点P,如图,,且点A,下列各点中,在第二象限的点是等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map