数学八年级下册第十九章 平面直角坐标系综合与测试课时练习
展开
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课时练习,共26页。试卷主要包含了若点在轴上,则点的坐标为,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)2、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点在第三象限内,则m的值可以是( )A.2 B.0 C. D.4、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是( )A. B. C. D.或5、若点在轴上,则点的坐标为( )A. B. C. D.6、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为( )A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)7、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.8、已知点和点关于轴对称,则的值为( )A.1 B. C. D.9、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.10、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是( )A.4 B.3,4 C.4,5 D.2,3,4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______2、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.3、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.4、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M(a﹣2,a+1)在第二象限,则a的值为 _____.5、已知点是第二象限的点,则的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点A、B、C的对应点分别为D、E、F.(1)在图中画出△DEF,并直接写出点E的坐标;(2)判断线段AC与DF的关系为 ;(3)连接BD、CD,并直接写出△BCD的面积.2、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设. (1)直接写出的范围;(2)若点为轴上的动点,结合图形,求(用含的式子表示);(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.3、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点,,三点的坐标;(2)在轴、轴上找到与点、距离相等的点,.(要求:尺规作图,不写画法,保留作图痕迹).4、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)△ABC的面积是 ;(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .5、如图,在平面直角坐标系中有,两点,坐标分别为,,已知点的坐标为(1)确定平面直角坐标系,并画出;(2)请画出关于轴对称的图形,并直接写出的面积;(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值. -参考答案-一、单选题1、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,∴m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点,点位于第三象限,,解得:,故选:.【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.5、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.6、C【解析】【分析】连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.【详解】解:如图,连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,由旋转可知:∠MOM1=90°,OM=OM1,则∠AOM1+∠BOM=90°,又∠AOM1+∠AM1O=90°,∴∠AM1O=∠BOM,又∵∠OAM1=∠OBM=90°,OM=OM1,∴△OAM1≌△MBO(AAS),∴OA=BM=1,AM1=OB=2,∴M1(2,1),故选C.【点睛】本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.7、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.8、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.9、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴ ,解答2<m<5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.二、填空题1、【解析】【分析】作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.【详解】作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示由对称的性质得:PB=PC∴AB+PA+PB=AB+PA+PC≥AB+AC即当点P在AC上时,周长最小,且最小值为AB+AC由勾股定理得:,∴周长最小值为故答案为:【点睛】本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.2、 适当的 x轴,y轴 正方向 比例尺 单位长度 坐标【解析】略3、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.4、0或1##1或0【解析】【分析】根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.【详解】解:∵点M(a﹣2,a+1)在第二象限,∴a-2<0,a+1>0,∴-1<a<2,∵点M为格点,∴a为整数,即a的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.5、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.三、解答题1、 (1)见解析,点E的坐标为(0,1)(2)平行且相等(3)△BCD的面积为14【解析】【分析】(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为,再顺次连接,即可求解;(2)根据线段AC与DF是平移前后的对应线段,即可求解;(3)以 为底,则高为4,即可求解.(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为, 如图所示,△DEF即为所求;(2)线段AC与DF的关系为平行且相等,理由如下:∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,∴线段AC与DF是对应线段,∴线段AC与DF平行且相等;(3)S△BCD=×7×4=14.【点睛】本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.2、 (1)或(2)或(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点在轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出或的度数即可;(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点,∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,∴BN∥OC,∴的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;所以,的范围是或;(2)解:当点在点、之间时,此时,∵BC∥OA,∴,∵∠MBN=45°,∴,,∵与互余,,当点在点的左边时,此时,同理可得,,;当点在点的右边且在(8,0)左侧时,据题意,同理可得,,则,;(3)解:当点在点、之间时,如图①,过点作且交轴于点,,,,又,,,,,又,,,,而的周长为,当点在点的左边时,如图②,必有,,,而,,故,当点在点的右边时,如图③,则,,,而,,,综上所述,只有当点在轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.3、(1)图见解析,,,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,,,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:点,,.(2)作BC的垂直平分线与轴、轴的交点即为,【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.4、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵S△ACD=S△ABC,AC=AC∴即D点的纵坐标为4或-4又∵D点在y轴上故D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.5、 (1)图见解析;(2)图见解析,的面积为6;(3)点M的位置见解析,的最小值为【解析】【分析】(1)根据A、B两点的坐标确定平面直角坐标系,再描出点C的坐标,然后顺次连接A、B、C三点即可画出△ABC;(2)根据坐标与图形变换-轴对称即可画出,根据对称性质求解△ABC的面积即可;(3)连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,最小值为AB1的长,利用点A、B坐标求解AB1即可.(1)解,如图,平面直角坐标系和△ABC即为所求:(2)解:如图,即为所求:由图知:=S△ABC==6;(3)解:如图,连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,即点M即为所求,最小值为AB1的长,∵A(2,3)、B1(6,-1),∴AB1==,∴的最小值为.【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.
相关试卷
这是一份初中冀教版第十九章 平面直角坐标系综合与测试课后测评
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共26页。试卷主要包含了若点P,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。