搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专项训练练习题(精选)

    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专项训练练习题(精选)第1页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专项训练练习题(精选)第2页
    2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系专项训练练习题(精选)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十九章 平面直角坐标系综合与测试课时练习

    展开

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课时练习,共26页。试卷主要包含了若点在轴上,则点的坐标为,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)2、在平面直角坐标系中,已知点P(5,−5),则点P在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若点在第三象限内,则m的值可以是(       A.2 B.0 C. D.4、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是(       A. B. C. D.5、若点轴上,则点的坐标为(       A. B. C. D.6、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为(       A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)7、在平面直角坐标系中,点关于轴的对称点的坐标是(       A. B. C. D.8、已知点和点关于轴对称,则的值为(       A.1 B. C. D.9、平面直角坐标系中,下列在第二象限的点是(       A. B. C. D.10、已知点P(2﹣mm﹣5)在第三象限,则整数m的值是(  )A.4 B.3,4 C.4,5 D.2,3,4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,在平面直角坐标系中.在y轴找一点P,使得的周长最小,则周长最小值为_______2、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.3、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么AB两点的距离等于______.4、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点Ma﹣2,a+1)在第二象限,则a的值为 _____.5、已知点是第二象限的点,则的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点ABC的对应点分别为DEF(1)在图中画出DEF,并直接写出点E的坐标;(2)判断线段ACDF的关系为     (3)连接BDCD,并直接写出BCD的面积.2、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点分别在轴、轴上,设点轴上异于点的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设                          (1)直接写出的范围;(2)若点轴上的动点,结合图形,求(用含的式子表示);(3)当点轴上的动点时,求的周长的最小值,并说明此时点的位置.3、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点三点的坐标;(2)在轴、轴上找到与点距离相等的点(要求:尺规作图,不写画法,保留作图痕迹).4、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C(2)△ABC的面积是        (3)在y轴上有一点D,且SACDSABC,则点D的坐标为        5、如图,在平面直角坐标系中有两点,坐标分别为,已知点的坐标为(1)确定平面直角坐标系,并画出(2)请画出关于轴对称的图形,并直接写出的面积;(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值. -参考答案-一、单选题1、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点位于第三象限,解得:故选:【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.5、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.6、C【解析】【分析】连接OMOM1,分别过MM1y轴的垂线,垂足为AB,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.【详解】解:如图,连接OMOM1,分别过MM1y轴的垂线,垂足为AB由旋转可知:∠MOM1=90°,OM=OM1则∠AOM1+∠BOM=90°,又∠AOM1+∠AM1O=90°,∴∠AM1O=∠BOM又∵∠OAM1=∠OBM=90°,OM=OM1∴△OAM1≌△MBOAAS),OA=BM=1,AM1=OB=2,M1(2,1),故选C.【点睛】本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.7、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.8、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出的值,进而得出答案.【详解】解答:解:和点关于轴对称,故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出的值是解题关键.9、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣mm﹣5)在第三象限 ,解答2<m<5m是整数m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.二、填空题1、【解析】【分析】作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出ACAB的长,即可求得周长最小值.【详解】作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示由对称的性质得:PB=PCAB+PA+PB=AB+PA+PCAB+AC即当点PAC上时,周长最小,且最小值为AB+AC由勾股定理得:周长最小值为故答案为:【点睛】本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.2、     适当的     x轴,y     正方向     比例尺     单位长度     坐标【解析】3、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,故答案为:【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,斜边长为,那么4、0或1##1或0【解析】【分析】根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.【详解】解:∵点Ma﹣2,a+1)在第二象限,a-2<0,a+1>0,∴-1<a<2,∵点M为格点,a为整数,即a的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.5、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点, ,解得:的取值范围是故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.三、解答题1、 (1)见解析,点E的坐标为(0,1)(2)平行且相等(3)BCD的面积为14【解析】【分析】(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为,再顺次连接,即可求解;(2)根据线段ACDF是平移前后的对应线段,即可求解;3)以 为底,则高为4,即可求解.(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为如图所示,△DEF即为所求;(2)线段ACDF的关系为平行且相等,理由如下:将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF线段ACDF是对应线段,∴线段ACDF平行且相等;(3)SBCD×7×414【点睛】本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.2、 (1)(2)(3)只有当点轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出的度数即可;(3)当点在点之间时,过点轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,BNOC的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,所以,的范围是(2)解:当点在点之间时,此时BCOA∵∠MBN=45°,互余,当点在点的左边时,此时同理可得,当点在点的右边且在(8,0)左侧时,据题意,同理可得,(3)解:当点在点之间时,如图①,过点轴于点,又,而的周长为当点在点的左边时,如图②,必有,故当点在点的右边时,如图③,则,而综上所述,只有当点轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.3、(1)图见解析,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:(2)作BC的垂直平分线与轴、轴的交点即为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.4、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)SACDSABC为同底不同高,故由(2)问知,再由点Dy轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵SACDSABCAC=ACD点的纵坐标为4或-4又∵D点在y轴上D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.5、 (1)图见解析;(2)图见解析,的面积为6;(3)点M的位置见解析,的最小值为【解析】【分析】(1)根据AB两点的坐标确定平面直角坐标系,再描出点C的坐标,然后顺次连接ABC三点即可画出△ABC(2)根据坐标与图形变换-轴对称即可画出,根据对称性质求解△ABC的面积即可;(3)连接AB1x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,最小值为AB1的长,利用点AB坐标求解AB1即可.(1)解,如图,平面直角坐标系和△ABC即为所求:(2)解:如图,即为所求:由图知:=SABC==6;(3)解:如图,连接AB1x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,即点M即为所求,最小值为AB1的长,A(2,3)、B1(6,-1),AB1==的最小值为【点睛】本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键. 

    相关试卷

    初中冀教版第十九章 平面直角坐标系综合与测试课后测评:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试课后测评

    冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共26页。试卷主要包含了若点P,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map