数学八年级下册第十九章 平面直角坐标系综合与测试课后测评
展开
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后测评,共24页。试卷主要包含了在平面直角坐标系中,将点A,下列命题中为真命题的是,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点在第一象限,则a的取值范围是( )A. B. C. D.无解2、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.3、已知点在x轴上,点在y轴上,则点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)5、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣16、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )A. B. C. D.7、在平面直角坐标系中,点P(-3,-3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.29、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.10、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(−a,0),点B(a,0),其中a>0,点P为第二象限内一动点,但始终保持PA=a,∠PAB的平分线与线段PB的垂直平分线交于点D,则点D的横坐标是________.(用含a的式子表示)2、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.3、如图,直线,在某平面直角坐标系中,轴l1,轴l2,点的坐标为,点的坐标为,那么点在第__象限.4、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.5、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.(2)在图中x轴上作出一点P,使PA+PB的值最小.2、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.3、这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置: 4、如图,已知A点坐标为(﹣4,﹣3),B点坐标在x轴正半轴上,OB=OA.求:(1)△ABO的面积.(2)原点O到AB的距离.(3)在x轴上是否存在一点P使得△POA面积15,直接写出点P坐标.5、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值. -参考答案-一、单选题1、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.2、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、B【解析】【分析】根据题意,结合坐标轴上点的坐标的特点,可得m、n的值,进而可以判断点所在的象限.【详解】解:∵点在x轴上,∴,解得:,∵点在y轴上,∴解得:,∴点的坐标为,即在第二象限.故选:B.【点睛】本题主要考查坐标轴上点的特点,并能根据点的坐标,判断其所在的象限,理解坐标轴上点的特点是解题关键.4、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.5、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.6、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点A作AC⊥OB于C,∵,∠AOB=,∴,∴,∴A.∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,∴第1秒时,点A的对应点的坐标为,∵三角板每秒旋转,∴此后点的位置6秒一循环,∵,∴则第2022秒时,点A的对应点的坐标为,故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.7、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).8、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.9、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.10、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.二、填空题1、a##【解析】【分析】先证明Rt△DEP≌Rt△DFB(HL),推出PE=BF,再证明Rt△DEA≌Rt△DFA(HL),推出AE=AF,求得PE=BF=a,即可求解.【详解】解:连接DP、DB,过点D作DE⊥AP交AP延长线于点E,过点D作DF⊥AB于F,∵∠PAB的平分线与线段PB的垂直平分线交于点D,∴DP=DB,DE=DF,∴Rt△DEP≌Rt△DFB(HL),∴PE=BF,∵DE=DF,AD=AD,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,∵点A(−a,0),点B(a,0),PA=a,∴PA=AO=BO=a,∵AE=AF,PE=BF,∴a+PE=2a-BF,∴PE=BF=a,∴OF=a,∵DF⊥AB于F,∴点D的横坐标是a.故答案为:a.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,线段垂直平分线的性质,角平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件.2、(﹣3,2)【解析】【分析】由题意知m+1=2,得m的值;将m代入求点P的坐标即可.【详解】解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上∴m+1=2解得m=1∴3m﹣6=3×1﹣6=﹣3∴点P的坐标为(﹣3,2)故答案为:(﹣3,2).【点睛】本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.3、一【解析】【分析】根据题意作出平面直角坐标系,根据图象可以直接得到答案.【详解】如图,点的坐标为,点的坐标为,点位于第二象限,点位于第四象限,点位于第一象限.故答案是:一.【点睛】本题考查了坐标与图形性质,解题时,利用了“数形结合”的数学思想,比较直观.4、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.5、或【解析】【分析】根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C关于坐标轴翻折,分两种情况讨论:点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;故答案为:或.【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.三、解答题1、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析【解析】【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.【详解】解:(1)如图所示,△A′B′C′即为所求.点B′的坐标为(-4,1);(2)如图所示,点P即为所求.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、或##或【解析】【分析】根据题意作出图形,①当时,过点作轴于点,证明;②当时,过点作轴于点,证明,根据点的坐标即可求得的坐标.【详解】解:如图,、,以AB为直角边在第一象限内作等腰直角三角形,则,①当时,过点作轴于点,在与中②当时,过点作轴于点,同理可得,综上,点C的坐标是或故答案为:或【点睛】本题考查了坐标与图形,等腰直角三角形的性质,三角形全等的性质与判定,分类讨论是解题的关键.3、见解析【解析】【详解】4、 (1)(2)(3)存在,点P坐标为(﹣10,0)或(10,0)【解析】【分析】(1)过A作AC⊥x轴于C,则OC=4,AC=3,由勾股定理得OA=5,则OB=OA=5,再由三角形面积公式求解即可;(2)过O作OD⊥AB于D,由勾股定理得AB=3,再由三角形面积公式得S△ABO=AB×OD=,则OD=,即可求解;(3)过A作AC⊥x轴于C,由三角形面积求出OP=10,分两种情况即可求解.(1)解:过A作AC⊥x轴于C,如图1所示:∵A点坐标为(﹣4,﹣3),∴OC=4,AC=3,∴OA===5,∴OB=OA=5,∴S△ABO=OB×AC=×5×3=;(2)解:过O作OD⊥AB于D,如图2所示:由(1)得:OA=OB=5,AC=3,OC=4,∴BC=OB+OC=5+4=9,∴AB===3,∵S△ABO=AB×OD=×3×OD=,∴OD=,即原点O到AB的距离为;(3)解:在x轴上存在一点P使得△POA面积15,理由如下:如图3所示:由(1)得:AC=3,∵S△POA=OP×AC=×OP×3=15,∴OP=10,当点P在x轴负半轴时,点P坐标为(﹣10,0);当点P在x轴正半轴时,点P坐标为(10,0);综上所述,在x轴上存在一点P使得△POA面积15,点P坐标为(﹣10,0)或(10,0).【点睛】本题考查坐标与图形、勾股定理、三角形的面积公式,利用数形结合和分类讨论思想求解是解答的关键.5、 (1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试精练,共26页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共23页。试卷主要包含了点关于轴的对称点是,在平面直角坐标系中,将点A等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了在平面直角坐标系中,点,已知点P的坐标为等内容,欢迎下载使用。