搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详解)

    难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详解)第1页
    难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详解)第2页
    难点详解冀教版八年级数学下册第十九章平面直角坐标系专项攻克试题(含详解)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十九章 平面直角坐标系综合与测试练习题

    展开

    这是一份初中第十九章 平面直角坐标系综合与测试练习题,共26页。试卷主要包含了点关于轴对称的点是,点关于轴的对称点是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在一次“寻宝”游戏中,寻宝人已经找到两个标志点,并且知道藏宝地点的坐标是,则藏宝处应为图中的(       A.点 B.点 C.点 D.点3、若点M在第二象限,且点Mx轴的距离为2,到y轴的距离为1,则点M的坐标为(     A. B. C. D.4、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为(       A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)5、若y轴负半轴上的点Px轴的距离为2,则点P的坐标为(  )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)6、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是(  )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)7、点关于轴对称的点是(  )A. B. C. D.8、在平面直角坐标系中,点关于轴对称的点的坐标是(       A. B. C. D.9、点关于轴的对称点是(       A. B. C. D.10、在平面直角坐标系的第二象限内有一点P,点Px轴的距离为2,到y轴的距离为3,则点P的坐标是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(7,6)关于x轴对称点P′的坐标是 _____.2、若点x轴上,写出一组符合题意的mn的值______.3、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,(1)当△ABP成为等边三角形时,点 P的坐标为________.(2)若∠APB<45°,则 t的取值范围为_______.4、将点Pm,1)向右平移5个单位长度,得到点Q(3,1),则点P坐标为_________.5、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数ab组成的数对,叫做有序数对,记作(     ),___ ). 注意:①数ab是有顺序的;②数ab是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长为1个单位长度,三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若内部一点,经过上述变换后,则内对应点的坐标为______.2、在如图所示的平面直角坐标系中,A点坐标为(1)画出关于y轴对称的(2)求的面积.3、如图,在平面直角坐标系中,(1)在图中作出关于轴的对称图形,并直接写出点的坐标;(2)求的面积;(3)点与点关于轴对称,若,直接写出点的坐标.4、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A (-1,3), B (-4,3) ,O (0,0).(1)△ABO向右平移5个单位,向上平移1个单位,得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)画出△A1B1C1沿着x轴翻折后得到的△A2B2C2,并写出点A2的坐标.5、如图1,在平面直角坐标系中,点x轴负半轴上,点By轴正半轴上,设,且(1)直接写出的度数.(2)如图2,点DAB的中点,点Py轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.(3)如图3,点C与点A关于y轴对称,点EOC的中点,连接BE,过点B,且,连接AFBC于点P,求的值. -参考答案-一、单选题1、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.2、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.3、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:M在第二象限,且M轴的距离为2,到y轴的距离为1,M的横坐标为,点的纵坐标为M的坐标为:故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.4、C【解析】【分析】连接OMOM1,分别过MM1y轴的垂线,垂足为AB,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.【详解】解:如图,连接OMOM1,分别过MM1y轴的垂线,垂足为AB由旋转可知:∠MOM1=90°,OM=OM1则∠AOM1+∠BOM=90°,又∠AOM1+∠AM1O=90°,∴∠AM1O=∠BOM又∵∠OAM1=∠OBM=90°,OM=OM1∴△OAM1≌△MBOAAS),OA=BM=1,AM1=OB=2,M1(2,1),故选C.【点睛】本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.5、D【解析】【分析】Py轴上则该点横坐标为0,据此解答即可.【详解】y轴负半轴上的点Px轴的距离为2,∴点P的坐标为(0,﹣2).故选:D【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.6、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(34),B3,﹣2),故选:C【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.7、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8、D【解析】【分析】在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.【详解】解:点关于轴对称的点的坐标是故选:D.【点睛】本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.9、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.10、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点Px轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题1、(7,-6)【解析】【分析】在平面直角坐标系中,关于x轴对称点的特征是横坐标不变,纵坐标变为原数的相反数,据此解题.【详解】解:点P(7,6)关于x轴对称点P′的坐标是(7,-6)故答案为:(7,-6).【点睛】本题考查平面直角坐标系中关于x轴对称点的特征,是基础考点,掌握相关知识是解题关键.2、(答案不唯一)【解析】【分析】根据轴上点的坐标特点,纵坐标为0,即可求解.【详解】解:根据轴上点的坐标特点,纵坐标为零即可,即x轴上,故答案是:(答案不唯一).【点睛】本题考查了轴上点的坐标特点,解题的关键是掌握在轴上点的坐标的纵坐标为0.3、     (0,)或(0,-);     t>2+t<-2-【解析】【分析】(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;(2)分两种情况,点Px轴上方,∠APB=45°,根据点Py轴上,OA=OB=2,可得OPAB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOCPCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点Px轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.【详解】解:(1)∵ABP成为等边三角形,点A(2,0),B(-2,0),AP=AB=2-(-2)=2+2=4,在RtOAP中,点P(0,t),根据勾股定理,即解得∴点P(0,)或(0,-),故答案为(0,)或(0,-);(2)分两种情况,点Px轴上方,∠APB=45°,∵点Py轴上,OA=OB=2,OPAB的垂直平分线,AP=BP∴∠APO=∠BPO=22.5°,y轴的正半轴上截取OC=OA=2,∠AOC=90°,∴△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=∵∠AOCPCA的外角,∴∠ACO=∠CPA+∠CAP=45°,∵∠APO=22.5°,∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,∴∠CPA=∠CAPCP=AC=OP=OC+CP=2+∴点P(0,2+当∠APB<45°时,t>2+当点Px轴下方,利用轴对称性质,P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-综合得∠APB<45°,则 t的取值范围为t>2+t<-2-故答案为t>2+t<-2-【点睛】本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.4、(-2,1)【解析】5、     位置     有顺序     a     b     一一对应【解析】三、解答题1、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.2、(1)见解析;(2)【解析】【分析】(1)分别作ABC三点关于y轴的对称点A1B1C1,顺次连接A1B1C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作ABC三点关于y轴的对称点A1B1C1,△A1B1C1即为所求;(2)SABC=3×3=【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.3、 (1)见详解;(−2,1);(2)8.5;(3)P(5,3)或(−1,−3).【解析】【分析】(1)画出A1B1C1,据图直接写出C1坐标;(2)先求出ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得ABC的面积;(3)先根据PQ关于x轴对称,得到Q的坐标,再构建方程求解即可.(1)解:如图1A1B1C1就是求作的与ABC关于x轴对称的三角形,点C1的坐标(−2,1);(2)解:如图2由图知矩形CDEF的面积:5×5=25ADC的面积:×4×5=10ABE的面积:×1×3= CBF的面积:×5×2=5所以ABC的面积为:25-10--5=8.5.(3)解:∵点P(a,a−2)与点Q关于x轴对称,Q(a,2−a),PQ=6,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.4、 (1)见解析,(2)见解析,【解析】【分析】(1)把△ABO的三个顶点ABO分别向平移5个单位,向上平移1个单位,得到对应点A1B1C1,依次连接这三个点即可得到△A1B1C1,即可写出点B1的坐标;(2)把△A1B1C1的三个顶点A1B1C1沿着x轴翻折后得到A2B2C2依次连接这三点,得到△A2B2C2,由翻折即可写出点A2的坐标.(1)如图所示,(2)如图所示,.【点睛】本题考查了平面直角坐标系中图形的平移与翻折,关键是确定三角形三个顶点平移与翻折后点的坐标.5、(1);(2);(3)【解析】【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得(2)连接BM,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F轴交CB的延长线于点N,证明,设,则等边三角形ABC的边长是4a,进而计算可得,即可求得的值.【详解】(1)∵点x轴负半轴上,如答图1,在x轴的正半轴上取点C,使,连接BC又∵是等边三角形,(2)如答图2,连接BM是等边三角形,∵∠DAB的中点,,在中,,即为等边三角形,,∴(3)如答图3,过点F轴交CB的延长线于点N中,又∵EOC的中点,设∴等边三角形ABC的边长是4a中,又∵【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键. 

    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,若点在轴上,则点的坐标为,在下列说法中,能确定位置的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了若点P等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map