冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共24页。试卷主要包含了若点P,下列说法错误的是,在平面直角坐标系中,点,点在第四象限,则点在第几象限,下列命题中为真命题的是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为( )A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)2、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)3、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号4、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限5、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限6、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)7、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣19、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)10、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,把点向右平移2个单位到点B,则点B位于第______象限.2、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.3、将点P(m+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为_________.4、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点______.5、一般地,在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点_________;将点(x,y)向左平移a个单位长度,可以得到对应点_________;将点(x,y)向上平移b个单位长度,可以得到对应点_________;将点(x,y)向下平移b个单位长度,可以得到对应点_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 2、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)△ABC是 三角形,理论依据 .3、对于平面直角坐标系中的任意一点,给出如下定义:记,,将点与称为点的一对“相伴点”.例如:点的一对“相伴点”是点与.(1)点的一对“相伴点”的坐标是______与______;(2)若点的一对“相伴点”重合,则的值为______;(3)若点的一个“相伴点”的坐标为,求点的坐标;(4)如图,直线经过点且平行于轴.若点是直线上的一个动点,点与是点的一对“相伴点”,在图中画出所有符合条件的点,组成的图形.4、在平面直角坐标系xOy中,将点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”.(1)点的“相对轴距”______;(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;(3)已知点,,,点M,N是内部(含边界)的任意两点.①直接写出点M与点N的“相对轴距”之比的取值范围;②将向左平移个单位得到,点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.5、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;(2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由. -参考答案-一、单选题1、B【解析】【分析】根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:第二象限的点到轴的距离是3,到轴的距离是2,点的横坐标是,纵坐标是3,点的坐标为.故选:B.【点睛】本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.2、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.3、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.4、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、A【解析】略6、A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).7、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.9、C【解析】【分析】根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(x,y),∵点P到x轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,∴y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.10、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.二、填空题1、四【解析】【分析】根据平移规律求得点B的坐标,即可求解.【详解】解:把点向右平移2个单位到点B,则即,从而得到点B,在第四象限,故答案为:四【点睛】此题考查了平面直角坐标系点的平移变换以及各象限的点的坐标规律,解题的关键是掌握平移规律求得点B的坐标.2、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点M(3,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1.故答案为:y=1.【点睛】此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.3、(1,0)【解析】略4、(4,﹣2)【解析】【分析】由题意根据炮的坐标建立平面直角坐标系,然后写出马的坐标即可.【详解】解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查坐标确定位置,准确确定出坐标原点的位置是解题的关键.5、 (x+a,y) (x-a,y) (x,y+b) (x,y-b)【解析】略三、解答题1、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.2、(1)见解析;(2)图见解析,C'的坐标为(﹣5,5);(3)直角;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【解析】【分析】(1)根据点A及点C的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据关于y轴对称的点的坐标,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;【详解】解:(1)如图所示: (2)如图所示:△A'B'C'即为所求: C'的坐标为(﹣5,5); (3)直角三角形,∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.依据:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【点睛】本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.3、 (1),(2)-4(3)或(4)见解析【解析】【分析】(1)根据相伴点的含义可得,,从而可得答案;(2)根据相伴点的含义可得,再解方程可得答案;(3)由点的一个“相伴点”的坐标为,则另一个的坐标为 设点,再根据相伴点的含义列方程组,再解方程组即可;(4)设点,可得,,可得点的一对“相伴点”的坐标是与,再画出所在的直线即可.(1)解:,,,点的一对“相伴点”的坐标是与,故答案为:,;(2)解:点,,,点的一对“相伴点”的坐标是和,点的一对“相伴点”重合,,,故答案为:;(3)解:设点,点的一个“相伴点”的坐标为,则另一个的坐标为 或,或,或;(4)解:设点,,,点的一对“相伴点”的坐标是与,当点的一个“相伴点”的坐标是,点在直线上,当点的一个“相伴点”的坐标是,点在直线上,即点,组成的图形是两条互相垂直的直线与直线,如图所示,【点睛】本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键.4、 (1)2;(2)见详解;(3)①;②【解析】【分析】(1)根据题意正确写出答案即可;(2)根据题意画出图形即可;(3)①正确画出图形,根据题意分别求出,的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.(1)解:点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,点 2;(2)解:的“相对轴距”是2,与点的“相对轴距”相等的点的横纵坐标的最大值为2,依题意得到的图形是正方形,如图,(3)解:①如图,当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”, 当取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合, 的最小值为1,的最大值为3时,的最小值为,当取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,的最大值为3,的最小值为1时,的最大值3, ; ② 点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,依题意,点的坐标为, 点在两点(1,1),(-1,1)确定的线段上,, .【点睛】本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.5、 (1)或(2)2【解析】【分析】(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.(1)+(a+2b﹣4)2=0.解得又C(﹣1,2) ①若点在轴上时,设COM的面积=ABC的面积,解得②若点在轴上时,设COM的面积=ABC的面积,解得综上所述,点M的坐标为或(2)的值不变,理由如下:∵CD⊥y轴,AB⊥y轴,∴∠CDO=∠DOB=90°,∴AB∥CD,∴∠OPD=∠POB.∵OF⊥OE,∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,∵OE平分∠AOP,∴∠POE=∠AOE,∴∠POF=∠BOF,∴∠OPD=∠POB=2∠BOF.∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF,∴∠OPD=2∠BOF=2∠DOE,∴=2.【点睛】本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试习题,共24页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共22页。试卷主要包含了下列命题为真命题的是,在平面直角坐标系中,点P,若点在轴上,则点的坐标为,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了在平面直角坐标系中,点,已知点P的坐标为等内容,欢迎下载使用。