初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共24页。试卷主要包含了在平面直角坐标系xOy中,点M,已知点P,下列说法错误的是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)2、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号3、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为( )A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-10127、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是( )A.4 B.3,4 C.4,5 D.2,3,48、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限9、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、点关于轴的对称点是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.2、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.3、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.4、在平面直角坐标系中,点A(4,﹣3)到x轴的距离是___.5、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标.2、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.3、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.(1)写出点Aʹ,Bʹ,Cʹ的坐标;(2)在图中画出平移后的三角形AʹBʹCʹ;(3)求三角形AʹBʹCʹ的面积.4、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).5、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;(2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由. -参考答案-一、单选题1、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.2、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.3、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.4、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点所在的象限是第四象限,故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.5、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).6、C【解析】【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.7、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴ ,解答2<m<5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.8、A【解析】略9、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.10、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.二、填空题1、 (-4,-3) (-4,3) 5【解析】【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.【详解】解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:.故答案是:(-4,-3);(-4,3);5.【点睛】此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、【解析】【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,,在中,,,解得,,由旋转的性质得:,,,,在和中,,,,,故答案为:.【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.3、 (4,2) (0,4)或(0,-4)【解析】【分析】根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;【详解】解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,∴点D的坐标为(4,2);同理可得点C的坐标为(0,2),∴OC=2,∵A(-1,0),B(3,0),∴AB=4,∴,设点P到AB的距离为h,∴S△PAB=×AB×h=2h,∵S△PAB=S四边形ABDC,得2h=8,解得h=4,∵P在y轴上,∴OP=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.4、3【解析】【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(4,﹣3)到x轴的距离是3.故答案为:3.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与横(纵)坐标的关系是解答的关键.5、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作,∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.三、解答题1、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【解析】【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)∵关于轴对称的,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),∴中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.2、(1)见解析;(2).【解析】【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.3、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)见解析(3)△AʹBʹCʹ的面积为7.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用(1)中所求对应点位置画图形即可;(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.(1)解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)解:如图所示:△AʹBʹCʹ即为所求;(3)解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.【点睛】本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.4、 (1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵ ,,∴ ,,.∵ ,∴ .在中,由,得.解得.∴ ,.∵ 是由旋转得到的,∴ ,.∴ .∴ .∴ .在中,.∴ 点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴ .∴ .∵ 是由旋转得到的,∴ .在中,由,得.∴ 点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.5、 (1)或(2)2【解析】【分析】(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.(1)+(a+2b﹣4)2=0.解得又C(﹣1,2) ①若点在轴上时,设COM的面积=ABC的面积,解得②若点在轴上时,设COM的面积=ABC的面积,解得综上所述,点M的坐标为或(2)的值不变,理由如下:∵CD⊥y轴,AB⊥y轴,∴∠CDO=∠DOB=90°,∴AB∥CD,∴∠OPD=∠POB.∵OF⊥OE,∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,∵OE平分∠AOP,∴∠POE=∠AOE,∴∠POF=∠BOF,∴∠OPD=∠POB=2∠BOF.∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF,∴∠OPD=2∠BOF=2∠DOE,∴=2.【点睛】本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共25页。试卷主要包含了点关于轴对称的点是,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习,共27页。试卷主要包含了如图,树叶盖住的点的坐标可能是,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共22页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,点P等内容,欢迎下载使用。