冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共23页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系中,已知点P,在下列说法中,能确定位置的是,在平面直角坐标系中,将点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )A.将沿轴翻折得到B.将沿直线翻折,再向下平移个单位得到C.将向下平移个单位,再沿直线翻折得到D.将向下平移个单位,再沿直线翻折得到2、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限3、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)5、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.7、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号8、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )A. B. C. D.9、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)10、若点在轴上,则点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.2、由点A分别向 x轴,y轴作垂线,垂足M在x轴上的坐标是3,垂足N在 y轴上的坐标是4,有序数对(3,4)就叫做点A的______,其中3是______,4是______.注意:表示点的坐标时,必须______在前,______在后,中间用______隔.3、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.4、点到轴的距离为______,到轴的距离为______.5、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).2、已知二元一次方程,通过列举将方程的解写成下列表格的形式,x-3-1ny6m-2如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.(1)①表格中的______,______;②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.3、已知是经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示: (1)观察表中各对应点坐标的变化,确定______,______,______;(2)在平面直角坐标系中画出,,并求出的面积.4、在平面直角坐标系中,的三个顶点坐标分别是.(1)画出;(2)将平移,使点A平移到原点O,画出平移后的图形并写出点B和点C的对应点坐标.5、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积. -参考答案-一、单选题1、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A、根据图象可得:将沿x轴翻折得到,作图正确;B、作图过程如图所示,作图正确;C、如下图所示为作图过程,作图错误;D、如图所示为作图过程,作图正确;故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.2、A【解析】略3、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.4、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.5、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.6、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.7、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.8、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.9、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.10、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.二、填空题1、 (4,2) (0,4)或(0,-4)【解析】【分析】根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;【详解】解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,∴点D的坐标为(4,2);同理可得点C的坐标为(0,2),∴OC=2,∵A(-1,0),B(3,0),∴AB=4,∴,设点P到AB的距离为h,∴S△PAB=×AB×h=2h,∵S△PAB=S四边形ABDC,得2h=8,解得h=4,∵P在y轴上,∴OP=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.2、 坐标 横坐标 纵坐标 横坐标 纵坐标 逗号【解析】略3、 3 【解析】【分析】根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.【详解】解:∵点与点关于y轴对称,∴,,故答案为:3;.【点睛】题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.4、 5 2【解析】【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点到轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.5、22020【解析】【分析】根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),∴OA0=1,∴点A1 的横坐标是 1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21, 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:点A3 的横坐标是﹣2OA2=﹣8=﹣23,点A4 的横坐标是﹣8=﹣23,点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,点A7 的横坐标是64=26,…发现规律,6次一循环,即,,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020.故答案为:22020.【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.三、解答题1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.2、 (1)①4,5;②图见解析(2)【解析】【分析】(1)①将代入方程可得的值,将代入方程可得的值;②先确定三个解的对应点的坐标,再在所给的平面直角坐标系中画出即可得;(2)将点,代入方程可得一个关于二元一次方程组,解方程组即可得.(1)解:①将代入方程得:,解得,即,将代入方程得:,解得,即,故答案为:4,5;②由题意,三个解的对应点的坐标分别为,,,在所给的平面直角坐标系中画出如图所示:(2)解:由题意,将代入得:,整理得:,解得.【点睛】本题考查了二元一次方程(组)、平面直角坐标系等知识点,熟练掌握二元一次方程组的解法是解题关键.3、 (1) 0, 2, 9;(2).【解析】【分析】(1)根据点平移的特征是上加下减,右加左减,由点A的纵坐标0到点A′的纵坐标2,确定向上平移2个单位,由点B的横坐标3到点B′横坐标7,确定向右平移4个单位,利用平移求出A(0,0),B(3,0),C(5,5),以及A′(4,2),B′(7,2),C′(9,7),得出a=0, b=2, c=9,画出图形即可;(2)先求出点A、B、C与A′、B′、C′坐标,描点,连线,求出三角形的底AB,和高CD,然后利用三角形面积公式计算即可(1)解:是经过平移得到的,由点A的纵坐标0到点A′的纵坐标2,可知是向上平移2个单位,由点B的横坐标3到点B′横坐标7,可知是向右平移4个单位,∴点A′向左平移4个单位,再向下平移2个单位是点A, ∴a=4-4=0,点A(0,0),点A′(4,2),∴点B向右平移4个单位,再向上平移2个单位是点B′,∴b=0+2=2,点B′(7,2),点B(3,0),∴点C向右平移4个单位,再向上平移2个单位是点C′,∴c=5+4=9,C′(9,7),点C(5,5),故答案为: 0, 2, 9;(2)解:由(1)得出A(0,0),B(3,0),C(5,5),A′(4,2),B′(7,2),C′(9,7),在平面直角坐标系中描点A(0,0),B(3,0),C(5,5),顺次连结AB、BC、CA,得△ABC,在平面直角坐标系中描点A′(4,2),B′(7,2),C′(9,7),顺次连结A′B′、B′C′、C′A′,得,过点C作x轴的垂线交x轴于D,AB=3-0=3,CD=5-0=5,∴S△ABC=.【点睛】本题考查平面直角坐标系中点的坐标,画图,平移性质,三角形面积,两点距离公式,掌握描点画图方法,点平移的特征,两点距离公式,三角形面积公式是解题关键.4、 (1)画图见解析;(2)画图见解析,,【解析】【分析】(1)根据即可画出;(2)先画出平移后的,再写出点B1和点C1的坐标即可.(1)解:如图所示:即为所求.(2)解:平移后的如图所示:此时,【点睛】本题考查了作图-平移变换,掌握平移的性质是解决本题的关键.5、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共28页。试卷主要包含了在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试,共17页。试卷主要包含了下列命题中,是真命题的有,在平面直角坐标系中,点P,在平面直角坐标系中,将点A,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份数学第十九章 平面直角坐标系综合与测试达标测试,共26页。试卷主要包含了在平面直角坐标系中,点P,已知点和点关于轴对称,则的值为,在平面直角坐标系xOy中,点M,点在第四象限,则点在第几象限等内容,欢迎下载使用。