数学八年级下册第十九章 平面直角坐标系综合与测试测试题
展开
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试测试题,共27页。试卷主要包含了点P,点P关于y轴对称点的坐标是.,下列命题中,是真命题的有等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,已知点、,对连续作旋转变换依次得到三角形(1),(2),(3),(4),,则第2020个三角形的直角顶点的坐标是( )A. B. C. D.2、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.3、在平面直角坐标系中,点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限4、点P(-3,4)到坐标原点的距离是( )A.3 B.4 C.-4 D.55、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.6、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)7、下列命题中,是真命题的有( )①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤8、在平面直角坐标系的第二象限内有一点P,点P到x轴的距离为2,到y轴的距离为3,则点P的坐标是( )A. B. C. D.9、如图,在平面直角坐标系中,将等边绕点A旋转180°,得到,再将绕点旋转180°,得到,再将绕点旋转180°,得到,…,按此规律进行下去,若点,则点的坐标为( )A. B. C. D.10、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果点A的坐标为(2,﹣1),点B的坐标为(5,3),那么A、B两点的距离等于 ___.2、电影票上“10排3号”,记作,“8排23号”,记作,则“5排16号”记作______.3、点到轴的距离为______,到轴的距离为______.4、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.5、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,已知点A的坐标为(4,1),点B的坐标为(1,﹣2),BC⊥x轴于点C.(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标 ;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为 ;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.2、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积.3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)4、如图,在正方形网格中,每个小正方形的边长为1个单位长度,、、三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到.(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若是内部一点,经过上述变换后,则内对应点的坐标为______.5、在棋盘中建立如图所示的平面直角坐标系,A、O、B三颗棋子的位置如图所示,它们的坐标分别是,,.(1)如图添加棋子C,使A、O、B、C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴.(2)在其他格点(除点C外)位置添加一颗棋子P,使A、O、B、P四颗棋子成为一个轴对称图形,直接写出棋子P的位置坐标(写出2个即可). -参考答案-一、单选题1、C【解析】【分析】利用勾股定理列式求出的长,再根据图形写出第(3)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2020除以3,根据商和余数的情况确定出第个三角形的直角顶点到原点的距离,然后写出坐标即可.【详解】解:点,,三角形(3)的直角顶点坐标为:第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合第2020个三角形的直角顶点的坐标是.故选:C.【点睛】本题考查了坐标与图形变化旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组,依次循环是解题的关键.2、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.3、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:,,在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.4、D【解析】【分析】利用两点之间的距离公式即可得.【详解】解:点到坐标原点的距离是,故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.5、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.6、A【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.8、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.9、C【解析】【分析】根据题意先求得的坐标,进而求得的坐标,发现规律,即可求得的坐标.【详解】解:∵是等边三角形,,将等边绕点A旋转180°,得到,∴,则同理可得,……,即故选C【点睛】本题考查了等边三角形的性质,旋转的性质,含30度角的直角三角形的性质,勾股定理,坐标与图形,找到规律是解题的关键.10、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.二、填空题1、5【解析】【分析】利用两点之间的距离公式即可得.【详解】解:,,即、两点的距离等于5,故答案为:5.【点睛】本题考查了两点之间的距离公式,熟记两点之间的距离公式是解题关键.2、【解析】【分析】根据题中规定的意义写出一对有序实数对.【详解】解:∵电影票上“10排3号”,记作,“8排23号”,记作,∴“5排16号”记作(5,16).故答案为(5,16).【点睛】本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.3、 5 2【解析】【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点到轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.4、【解析】【分析】过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C作 轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴ ,∴BD=CD=2,∴OD=OB+BD=3,∴点,将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,∵ ,∴第2021次旋转结束时,点C的坐标为.故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.5、 (4,2) (0,4)或(0,-4)【解析】【分析】根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;【详解】解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,∴点D的坐标为(4,2);同理可得点C的坐标为(0,2),∴OC=2,∵A(-1,0),B(3,0),∴AB=4,∴,设点P到AB的距离为h,∴S△PAB=×AB×h=2h,∵S△PAB=S四边形ABDC,得2h=8,解得h=4,∵P在y轴上,∴OP=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.三、解答题1、 (1)作图见解析,C点坐标为(2)(3)4.5(4)E点坐标为或【解析】【分析】(1)在平面直角坐标系中表示出A,B,C即可.(2)由题意知,,将点C向下移动3格,向左移动3格到点D,得出坐标.(3)利用分割法求面积,的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E点坐标为,由题意列方程求解即可.(1)解:如图,点A,B,C即为所求,C点坐标为(1,0)故答案为:(1,0).(2)解:∵点A向下移动3格,向左移动3格到点B,∴点C向下移动3格,向左移动3格到点D∴D点坐标为故答案为:.(3)解:∵∴以A,B,O为顶点的三角形的面积为4.5.(4)解:设E点坐标为由题意可得解得:或∴E点坐标为或.【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.2、(1)见解析;(2)见解析;(3)16【解析】【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.3、 (1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.4、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.5、 (1)作图见解析(2)(1,-1)、(0,-1)、(-2,1)(写出2个即可)【解析】【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.(1)如图所示,C点的位置为(1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图所示:都符合题意,【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.
相关试卷
这是一份数学第十九章 平面直角坐标系综合与测试课时训练,共25页。试卷主要包含了在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共30页。试卷主要包含了如图,树叶盖住的点的坐标可能是,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。