冀教版八年级下册第二十章 函数综合与测试同步训练题
展开冀教版八年级数学下册第二十章函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列曲线中,表示y是x的函数的是( )
A. B.
C. D.
2、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
3、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )
A.该游泳池内开始注水时已经蓄水100m3
B.每小时可注水190m3
C.注水2小时,游泳池的蓄水量为380m3
D.注水2小时,还需注水100m3,可将游泳池注满
4、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/h B.60km/h C.70km/h D.90km/h
5、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
6、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )
A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x
7、下列各表达式不是表示y是x的函数的是( )
A. B.
C. D.
8、在函数中,自变量的取值范围是( )
A. B. C. D.
9、如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).
A.线段EF B.线段DE C.线段CE D.线段BE
10、根据如图所示的程序计算函数y的值,若输入x的值为4时,输出的y的值为7,则输入x的值为2时,输出的y的值为( )
A.1 B.2 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在函数中,自变量的取值范围是___________.
2、函数的自变量x的取值范围是_______的实数.
3、等腰三角形中,底角的度数用x表示,顶角的度数用y表示,写出y关于x的函数解析式 ___,函数的定义域 ___.
4、在一个变化过程中,数值发生变化的量为_____.
在一个变化过程中,数值始终不变的量为_____.
在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.
5、在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是________,y是x的________.
三、解答题(5小题,每小题10分,共计50分)
1、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)
所挂物体质量x/kg | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
弹簧长度y/cm | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 |
(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是 (填序号)
(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.
(3)预测当所挂物体质量为10kg时,弹簧长度是多少?
(4)当弹簧长度为20cm时,求所挂物体的质量.
2、如果用c表示摄氏温度(),f表示华氏温度(),则c和f之间的关系是:.某日伦敦和纽约的最高气温分别为和,请把它们换算成摄氏温度.
3、植物呼吸作用受温度影响很大,观察如图,回答问题:
(1)此图反映的自变量和因变量分别是什么?
(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?
(3)要使豌豆呼吸作用最强,应控制在什么温度左右?
4、在计算器上按下面的程序操作:
填表:
x | 1 | 3 | 0 | 101 | ||
y |
|
|
|
|
|
|
显示的计算结果y是输入数值x的函数吗?为什么?
5、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.
(1)当t=2秒时,求PQ的长;
(2)求运动时间为几秒时,△PQC是等腰三角形?
(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据函数的定义进行判断即可.
【详解】
解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,
故选:C.
【点睛】
本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.
2、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
3、B
【解析】
【分析】
根据图象中的数据逐项判断即可解答.
【详解】
解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;
B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;
C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;
D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,
故选:B.
【点睛】
本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.
4、B
【解析】
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
5、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
6、C
【解析】
【分析】
先用x表示出矩形的长,然后根据矩形的面积公式即可解答.
【详解】
解:设矩形的宽为xcm,则长为(x+3)cm
由题意得:S=x(x+3)=x2+3x.
故选C.
【点睛】
本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.
7、C
【解析】
略
8、C
【解析】
【分析】
由二次根式有意义的条件,可得 解不等式即可得到答案.
【详解】
解:∵函数中,
则
∴;
故选:C.
【点睛】
本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.
9、B
【解析】
【分析】
根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.
【详解】
解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;
B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;
C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;
D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;
故选B.
【点睛】
本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
10、A
【解析】
【分析】
直接利用已知运算公式公式得出b的值,进而代入求出x=3时对应的值.
【详解】
解:∵输入x的值是4时,输出的y的值为7,
∴7=2×4+b,
解得:b=-1,
若输入x的值是2,则输出的y的值是:y=-1×2+3=1.
故选:A.
【点睛】
此题主要考查了函数值,正确得出b的值是解题关键.
二、填空题
1、
【解析】
【分析】
根据算术平方根的非负性即可完成.
【详解】
由题意,
∴
故答案为:.
【点睛】
本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.
2、
【解析】
【分析】
根据分式有意义的条件,二次根式有意义的条件,列出不等式,进而可得自变量x的取值范围.
【详解】
依题意
解得
【点睛】
本题考查了函数的定义,分式有意义的条件,二次根式有意义的条件,掌握以上知识是解题的关键.
3、
【解析】
【分析】
根据等腰三角形的性质可知两底角相等,根据三角形内角和定理即可列出函数解析式,根据角度底角和顶角都大于0,列出不等式组求得定义域.
【详解】
等腰三角形中,底角的度数用x表示,顶角的度数用y表示,
即
解得
故答案为:,.
【点睛】
本题考查了列函数解析式,一元一次不等式组的应用,等腰三角形的性质,三角形内角和定理,根据三角形内角和定理列出解析式是解题的关键.
4、 变量 常量 变化
【解析】
略
5、 自变量 函数
【解析】
略
三、解答题
1、 (1)③④;
(2)y=0.5x+12(0≤x≤18);
(3)弹簧长度是17cm;
(4)所挂物体的质量为16kg.
【解析】
【分析】
(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;
(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;
(3)令x=10时,求出y的值即可;
(4)令y=20时,求出x的值即可.
(1)
解: x与y都是变量,且x是自变量,y是x的函数,故①正确;
当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;
在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;
故答案为:③④;
(2)
解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,
∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.
∴0.5x+12≤21,解得:x≤18,
∴y=0.5x+12(0≤x≤18);
(3)
解:当x=10kg时,代入y=0.5x+12,
解得y=17cm,
即弹簧长度是17cm;
(4)
当y=20cm时,代入y=0.5x+12,
解得x=16,
即所挂物体的质量为16kg.
【点睛】
本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.
2、,
【解析】
【分析】
分别把华氏温度代入关系式计算即可得到答案.
【详解】
解:将代入中,解得:,
将代入中,解得:,
所以伦敦和纽约的温度换算成摄氏温度为:摄氏度,摄氏度.
【点睛】
本题考查了函数值的求解,将自变量的值代入函数关系式中即可,解题的关键是计算正确.
3、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)
【解析】
【分析】
(1)根据函数图象即可得到结论;
(2)根据图象中提供的信息即可得到结论;
(3)根据图象中提供的信息即可得到结论.
【详解】
解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;
(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;
(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).
【点睛】
本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.
4、7,11,,5,207,,y是x的函数,符合函数定义.
【解析】
【分析】
根据程序分别求出对应的y的值,再根据函数的定义判断即可.
【详解】
解:当x=1时,y=1×2+5=7;
当x=3时,y=3×2+5=11;
当x=-4时,y=(-4)×2+5=-3;
当x=0时,y=0×2+5=5;
当x=101时,y=101×2+5=207;
当x=-5.2时,y=3×2+5=-5.4;
给出x的一个值,有唯一的y值与之对应,所以显示的计算结果y是输入数值x的函数.
故答案为:7;11;-3;5;207;-5.4.
【点睛】
本题主要考查了函数的定义,注意:如果y是x的函数,则给出x的一个值,有唯一的y值与之对应.
5、(1)PQ=5cm;(2)t=;(3)S四边形APQB=30﹣5t+t2.
【解析】
【分析】
(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;
(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;
(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.
【详解】
解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,
∵∠C=90°,
∴PQ=,
∵t=2,
∴PQ=,
(2)∵∠C=90°,
∴当CP=CQ时,△PCQ是等腰三角形,
∴5﹣t=2t,
解得:t=,
∴t=秒时,△PCQ是等腰三角形;
(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ
=
=
=30﹣5t+t2.
【点睛】
本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.
初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共21页。试卷主要包含了小明家,下列图象表示y是x的函数的是,如图所示的图象等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课时练习: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时练习,共25页。试卷主要包含了在下列图象中,是的函数的是等内容,欢迎下载使用。
数学八年级下册第二十章 函数综合与测试复习练习题: 这是一份数学八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。