![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12765891/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12765891/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12765891/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学冀教版第十九章 平面直角坐标系综合与测试综合训练题
展开
这是一份数学冀教版第十九章 平面直角坐标系综合与测试综合训练题,共25页。试卷主要包含了已知点P,已知点和点关于轴对称,则的值为,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)2、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向3、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号4、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )A. B. C. D.5、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)6、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是( )A.4 B.3,4 C.4,5 D.2,3,47、已知点和点关于轴对称,则的值为( )A.1 B. C. D.8、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵9、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)10、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.2、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.3、在平面直角坐标系中,如果点在y轴上,那么点M的坐标是______.4、点关于y轴的对称点的坐标是______.5、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.三、解答题(5小题,每小题10分,共计50分)1、如图,线段AB的两个端点的坐标分别为,,线段AB与线段,关于直线m(直线m上各点的横坐标都为5)对称,线段,与线段关于直线n(直线n上各点的横坐标都为9)对称.(1)在图中分别画出线段、;(2)若点关于直线m的对称点为,点关于直线n的对称点为,则点的坐标是 .2、如图,是单位为1的方格.(1)在方格中建立直角坐标系,满足A,B两点的坐标分别是(0,2),(0,﹣2),并描出点C(2,﹣2),D(3,0),E(2,2),连接AB,BC,CD,DE,EA.(2)作出(1)中五边形ABCDE关于y轴的对称图形.(3)求(1)中所作的五边形ABCDE的周长和面积.3、某城市的简图如图(网格中每个小正方形的边长为1个单位长度),文化馆C的坐标是(﹣2,﹣3),宾馆F的坐标是(3,1),依次完成下列各问:(1)在图中建立平面直角坐标系,写出体育馆A的坐标 ,火车站M的坐标 ;(2)学校B与火车站M关于x轴对称,请在图中标出学校的位置点B,写出点B的坐标 ,计算出图中体育馆A到学校B的直线距离AB= ;(3)如果这幅图的比例尺为1:1000(1个单位长度表示1000米),求出学校到体育馆的实际距离.4、如图,在平面直角坐标系中,的三个顶点的坐标分别为,,.将向下平移3个单位,再向右平移4个单位得到;(1)画出平移后的;(2)写出、、的坐标;(3)直接写出的面积.5、如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.(1)直接写出的度数.(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. -参考答案-一、单选题1、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.2、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.3、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.4、B【解析】【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.5、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.6、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴ ,解答2<m<5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.7、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.8、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.9、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y=1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(3,4),∴B(3,﹣2),故选:C.【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.10、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.二、填空题1、【解析】【分析】过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C作 轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴ ,∴BD=CD=2,∴OD=OB+BD=3,∴点,将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,∵ ,∴第2021次旋转结束时,点C的坐标为.故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.2、【解析】【分析】利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.【详解】解:∵AC⊥OB,∴ ∵∠AOB=60°,∴ ∵OA=4,∴ 在Rt△ACO中, ∴ 故答案为:【点睛】本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.3、【解析】【分析】根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.【详解】解:在y轴上,,解得,,点M的坐标为.故答案为:.【点睛】本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.4、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.5、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解: 点A(a,-3)与点B(3,b)关于y轴对称, 故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.三、解答题1、(1)见解析;(2)【解析】【分析】(1)分别作出A、B二点关于直线m的对称点A1、B1,再分别作A1、B1,二点关于直线n的对称点A2、B2即可;(2)根据轴对称的性质得出坐标即可.【详解】解:(1)如图,线段,即为所求;(2)由轴对称性质可得、横坐标平均数等于5,纵坐标相等,则 , 由轴对称性质可得、横坐标平均数等于9,纵坐标相等,则.【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称的性质.2、(1)图见解析;(2)图见解析;(3)五边形的周长为,面积为10.【解析】【分析】(1)先根据点的坐标建立平面直角坐标系,再描点,然后顺次连接即可得;(2)先分别画出点关于轴的对称点,再顺次连接即可得;(3)先根据点坐标、两点之间的距离公式求出的长,从而可得五边形的周长,再根据五边形的面积等于矩形的面积与的面积之和即可得.【详解】解:(1)先根据点的坐标建立平面直角坐标系,再描出点,然后顺次连接,如图所示:(2)先分别画出点关于轴的对称点,再顺次连接,如图所示:(3),,则五边形的周长为,五边形的面积为.【点睛】本题考查了建立平面直角坐标系、画轴对称图形等知识点,熟练掌握平面直角坐标系和轴对称图形的画法是解题关键.3、 (1);(2);(3)学校到体育馆的距离为10000米【解析】【分析】(1)根据点C的坐标得到原点建立直角坐标系,由此得到点A及M的坐标;(2)根据轴对称的性质标出点B,得到点B的坐标,利用勾股定理求出AB的长度;(3)利用10乘以1000即可得到校到体育馆的实际距离.(1)解:建立如图所示的直角坐标系,∴A的坐标,M的坐标;故答案为:;;(2)解:在图中标出学校位置点B,B的坐标,=10;故答案为:,10;(3)解:学校到体育馆的距离为=10000米.【点睛】此题考查了确定直角坐标系,确定象限内点的坐标,轴对称的性质,勾股定理求线段的长度,比例尺计算实际距离,正确掌握象限内点的坐标特点确定坐标轴及勾股定理的计算公式是解题的关键.4、 (1)见解析(2)(3,-3)、(2,0)、(1,-2);(3)2.5【解析】【分析】(1)根据平移的性质分别得到点,再顺次连线即可得到;(2)由点在坐标系中位置直接得到坐标即可;(3)利用面积和差关系计算即可.(1)解:如图,即为所求;(2)解:由图可得(3,-3)、(2,0)、(1,-2);(3)解:的面积==2.5.【点睛】此题考查了在网格中平移作图,确定点的坐标,计算网格中图形的面积,正确掌握平移的性质正确作图是解题的关键.5、(1);(2);(3).【解析】【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.【详解】(1)∵点在x轴负半轴上,∴,,∵,,∴,∵,∴,∴,如答图1,在x轴的正半轴上取点C,使,连接BC,∵,∴,又∵,∴,∴,∴是等边三角形,∴;(2)如答图2,连接BM,∴是等边三角形,∵,,∵∠,∴,∴,∵D为AB的中点,∴,∵,∴,∴,在和中,∴,∴,即,∴,∴为等边三角形,∴,∴;(3)如答图3,过点F作轴交CB的延长线于点N,则,∵,∴,在和中,∴,∴,,∵,∴,又∵E是OC的中点,设,∴等边三角形ABC的边长是4a,,∵,∴,在和中,∴,∴,又∵,∴,,∴.【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共27页。试卷主要包含了在平面直角坐标系中,已知点P等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共23页。试卷主要包含了如图,,且点A,如图是象棋棋盘的一部分,如果用,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了如图,,且点A,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。