初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共25页。试卷主要包含了在平面直角坐标系中,点P,点关于轴对称点的坐标为等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)2、已知点和点关于轴对称,则的值为( )A.1 B. C. D.3、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)4、如果点在第四象限内,则m的取值范围( )A. B. C. D.5、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)7、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、点关于轴对称点的坐标为( )A. B. C. D.9、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.10、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数a与b组成的数对,叫做有序数对,记作( ),___ ). 注意:①数a与b是有顺序的;②数a与b是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.2、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.3、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.4、已知点,则点到轴的距离为______,到轴的距离为______.5、如果点在第四象限,那么点在第______象限.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中,经过点M(0,m),且平行于x轴的直线记作直线y=m.我们给出如下定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得到点P',则称点P'称为点P关于x轴和直线y=m的二次反射点.(1)点A(5,3)关于x轴和直线y=1的二次反射点A'的坐标是 ;(2)点B(2,﹣1)关于x轴和直线y=m的二次反射点B'的坐标是(2,﹣5),m= ;(3)若点C的坐标是(0,m),其中m>0,点C关于x轴和直线y=m的二次反射点是C',求线段CC'的长(用含m的式子表示);(4)如图,正方形的四个顶点坐标分别为(0,0)、(2,0)、(2,2)、(0,2),若点P(1,4),Q(1,5)关于x轴和直线y=m的二次反射点分别为P',Q',且线段P'Q'与正方形的边没有公共点,直接写出m的取值范围.2、如图,在平面直角坐标系xOy中有一个,其中点.(1)若与关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出和的坐标.3、在平面直角坐标系xOy中,已知点A的坐标为(4,1),点B的坐标为(1,﹣2),BC⊥x轴于点C.(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标 ;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为 ;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.4、如图,已知A点坐标为(﹣4,﹣3),B点坐标在x轴正半轴上,OB=OA.求:(1)△ABO的面积.(2)原点O到AB的距离.(3)在x轴上是否存在一点P使得△POA面积15,直接写出点P坐标.5、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;(2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由. -参考答案-一、单选题1、D【解析】【分析】根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点A到y轴的距离是3,∴点A横坐标为-3,过点A作AE⊥OD,垂足为E,∵∠DAO=∠CAO,AC⊥OB,AC=2,∴AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D.【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.2、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.3、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.4、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,∴,解得,;故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.5、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.7、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.8、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】点关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.9、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.10、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.二、填空题1、 位置 有顺序 a b 一一对应【解析】略2、(0,3)【解析】【分析】由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.【详解】解:由题意得a+1=0,得a=-1,∴2a+5=3,∴该点坐标为(0,3),故答案为:(0,3).【点睛】此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.3、或【解析】【分析】借助坐标系内三角形底和高的确定,利用三角形面积公式求解.【详解】解:如图,S1=×|yP−yA|×1,S2=×2×1=1,∵S1≥S2,∴|yP-1|≥3,解得:yP≤-2或yP≥4.【点睛】本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.4、 2 3【解析】【分析】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.【详解】∵点的坐标为,∴点到轴的距离为,到轴的距离为.故答案为:2;3【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.5、一【解析】【分析】先判断,再判断,结合象限内点的坐标规律可得答案.【详解】解:点在第四象限,,,在第一象限.故答案为:一.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.三、解答题1、 (1)(5,5)(2)-2(3)(4)或或【解析】【分析】(1)根据二次反射点的定义直接得出答案;(2)根据二次反射点的定义得出,则,由此可得的值;(3)根据二次反射点的定义得出,则可得出答案;(4)根据二次反射点的定义得出,,由题意分两种情况列出不等式组,解不等式组可得出答案.【小题1】解:点,点关于轴对称得到点,点关于直线对称得到点.故答案为:.【小题2】点,点关于轴对称得到点,点关于直线对称得到点,,解得,故答案为:.【小题3】点的坐标是,点关于轴对称得到点,点关于直线对称得到点,即,.【小题4】由题意可知,点,关于轴和直线的二次反射点分别为,,且轴,,线段与正方形的边没有公共点,有三种情况:①,解得;②,解得;③,解得.综上,若线段与正方形的边没有公共点,则的取值范围或或.【点睛】本题考查了平面直角坐标系中坐标与图形变化,考查了正方形的性质,轴对称性质,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.2、(1),,;(2)作图见解析;,.【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;【详解】解:(1)∵三个顶点坐标分别为:,,,∴三个顶点坐标分别为:,,.(2)如图所示:、的坐标分别为:,.【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.3、 (1)作图见解析,C点坐标为(2)(3)4.5(4)E点坐标为或【解析】【分析】(1)在平面直角坐标系中表示出A,B,C即可.(2)由题意知,,将点C向下移动3格,向左移动3格到点D,得出坐标.(3)利用分割法求面积,的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E点坐标为,由题意列方程求解即可.(1)解:如图,点A,B,C即为所求,C点坐标为(1,0)故答案为:(1,0).(2)解:∵点A向下移动3格,向左移动3格到点B,∴点C向下移动3格,向左移动3格到点D∴D点坐标为故答案为:.(3)解:∵∴以A,B,O为顶点的三角形的面积为4.5.(4)解:设E点坐标为由题意可得解得:或∴E点坐标为或.【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.4、 (1)(2)(3)存在,点P坐标为(﹣10,0)或(10,0)【解析】【分析】(1)过A作AC⊥x轴于C,则OC=4,AC=3,由勾股定理得OA=5,则OB=OA=5,再由三角形面积公式求解即可;(2)过O作OD⊥AB于D,由勾股定理得AB=3,再由三角形面积公式得S△ABO=AB×OD=,则OD=,即可求解;(3)过A作AC⊥x轴于C,由三角形面积求出OP=10,分两种情况即可求解.(1)解:过A作AC⊥x轴于C,如图1所示:∵A点坐标为(﹣4,﹣3),∴OC=4,AC=3,∴OA===5,∴OB=OA=5,∴S△ABO=OB×AC=×5×3=;(2)解:过O作OD⊥AB于D,如图2所示:由(1)得:OA=OB=5,AC=3,OC=4,∴BC=OB+OC=5+4=9,∴AB===3,∵S△ABO=AB×OD=×3×OD=,∴OD=,即原点O到AB的距离为;(3)解:在x轴上存在一点P使得△POA面积15,理由如下:如图3所示:由(1)得:AC=3,∵S△POA=OP×AC=×OP×3=15,∴OP=10,当点P在x轴负半轴时,点P坐标为(﹣10,0);当点P在x轴正半轴时,点P坐标为(10,0);综上所述,在x轴上存在一点P使得△POA面积15,点P坐标为(﹣10,0)或(10,0).【点睛】本题考查坐标与图形、勾股定理、三角形的面积公式,利用数形结合和分类讨论思想求解是解答的关键.5、 (1)或(2)2【解析】【分析】(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.(1)+(a+2b﹣4)2=0.解得又C(﹣1,2) ①若点在轴上时,设COM的面积=ABC的面积,解得②若点在轴上时,设COM的面积=ABC的面积,解得综上所述,点M的坐标为或(2)的值不变,理由如下:∵CD⊥y轴,AB⊥y轴,∴∠CDO=∠DOB=90°,∴AB∥CD,∴∠OPD=∠POB.∵OF⊥OE,∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,∵OE平分∠AOP,∴∠POE=∠AOE,∴∠POF=∠BOF,∴∠OPD=∠POB=2∠BOF.∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF,∴∠OPD=2∠BOF=2∠DOE,∴=2.【点睛】本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共21页。试卷主要包含了点A的坐标为,则点A在,已知点A,下列命题中为真命题的是等内容,欢迎下载使用。