初中数学第十九章 平面直角坐标系综合与测试练习题
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试练习题,共22页。试卷主要包含了在平面直角坐标系中,点P,若平面直角坐标系中的两点A,下列命题中为真命题的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )
A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)
2、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是( )
A.B.C.D.或
3、平面直角坐标系中,点到y轴的距离是( )
A.1B.2C.3D.4
4、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )
A.B.C.D.
5、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )
A.(2,)B.(,)C.(2,3)D.(3,)
6、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2B.-2C.4D.-4
7、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008B.-1010C.1012D.-1012
8、下列命题中为真命题的是( )
A.三角形的一个外角等于两内角的和
B.是最简二次根式
C.数,,都是无理数
D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣1
9、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )
A.B.C.D.
10、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△A′B′C′,则点P的坐标为( )
A.(0,4)B.(1,1)C.(1,2)D.(2,1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.
2、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M(a﹣2,a+1)在第二象限,则a的值为 _____.
3、如果点B与点C的横坐标相同,纵坐标不同,那么直线与y轴的关系为__________.
4、一般地,在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点_________;将点(x,y)向左平移a个单位长度,可以得到对应点_________;将点(x,y)向上平移b个单位长度,可以得到对应点_________;将点(x,y)向下平移b个单位长度,可以得到对应点_________.
5、若点在x轴上,写出一组符合题意的m,n的值______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.
(1)求∠B的度数;
(2)联结BQ,当∠BQC=90°时,求CQ的长;
(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.
2、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△A1B1C1关于x轴对称的△A2B2C2.
(3)求△AA1A2的面积
3、如图,在平面直角坐标系中,的三个顶点为,,.
(1)画出关于x轴对称的;
(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.
4、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);
(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;
(3)△ABC是 三角形,理论依据 .
5、在平面直角坐标系中,已知点A(﹣3,1),B(﹣2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.
-参考答案-
一、单选题
1、D
【解析】
【分析】
点P在y轴上则该点横坐标为0,据此解答即可.
【详解】
∵y轴负半轴上的点P到x轴的距离为2,
∴点P的坐标为(0,﹣2).
故选:D.
【点睛】
本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
2、A
【解析】
【分析】
根据点的平移规律可得,再根据第三象限内点的坐标符号可得.
【详解】
解:点先向左平移个单位得点,再将向上平移个单位得点,
点位于第三象限,
,
解得:,
故选:.
【点睛】
此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.
3、A
【解析】
【分析】
根据点到轴的距离是横坐标的绝对值,可得答案.
【详解】
解:∵,
∴点到轴的距离是
故选:A
【点睛】
本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.
4、C
【解析】
【分析】
到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.
【详解】
解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,
∴到△ABC三个顶点距离相等的点的坐标为(0,0),
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.
5、C
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.
【详解】
解:点关于x轴的对称点的坐标为:.
故选:C.
【点睛】
此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.
6、A
【解析】
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
7、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
8、D
【解析】
【分析】
利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.
【详解】
解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;
B、,不是最简二次根式,故原命题是假命题,不符合题意;
C、是有理数,故原命题错误,是假命题,不符合题意;
D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.
9、C
【解析】
【分析】
求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.
【详解】
解:过点A作AC⊥OB于C,
∵,∠AOB=,
∴,
∴,
∴A.
∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,
∴第1秒时,点A的对应点的坐标为,
∵三角板每秒旋转,
∴此后点的位置6秒一循环,
∵,
∴则第2022秒时,点A的对应点的坐标为,
故选:C
【点睛】
此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.
10、C
【解析】
【分析】
选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.
【详解】
解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)
故选:C.
【点睛】
本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.
二、填空题
1、(0,3)
【解析】
【分析】
由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.
【详解】
解:由题意得a+1=0,
得a=-1,
∴2a+5=3,
∴该点坐标为(0,3),
故答案为:(0,3).
【点睛】
此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.
2、0或1##1或0
【解析】
【分析】
根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.
【详解】
解:∵点M(a﹣2,a+1)在第二象限,
∴a-20,
∴-1
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试课时练习,共25页。试卷主要包含了若点P,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试精练,共24页。试卷主要包含了已知点P,在平面直角坐标系xOy中,点M,已知点P的坐标为等内容,欢迎下载使用。
这是一份2021学年第十九章 平面直角坐标系综合与测试巩固练习,共29页。试卷主要包含了在平面直角坐标系xOy中,点A,点A的坐标为,则点A在,点A关于y轴的对称点A1坐标是,下列命题为真命题的是等内容,欢迎下载使用。