![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12765914/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12765914/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系课时练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12765914/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共23页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面直角坐标系中,下列在第二象限的点是( )
A.B.C.D.
2、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )
A.(﹣6,2)B.(﹣2,﹣6)C.(﹣2,6)D.(2,﹣6)
3、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008B.-1010C.1012D.-1012
5、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2B.-2C.4D.-4
6、在平面直角坐标系中,所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A.B.C.D.
8、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点B.点C.点D.点
9、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米B.在河北省
C.在怀来县北方D.东经114.8°,北纬40.8°
10、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1B.C.7D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,等腰直角和等腰直角的位置如图所示,顶点,在轴上,,.若点的坐标为,则线段的长为__________.
2、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.
如图中,点A是第______象限内的点,点B是第______象限内的点,点D是______上的点.
3、已知点M坐标为,点M到x轴距离为______.
4、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
5、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出以下顶点的坐标:点A、点B.
(2)顶点C关于y轴对称的点C′的坐标.
(3)顶点B关于直线x=﹣1的对称点坐标.
2、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:
平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),
(1)①请在图中画出平面直角坐标系xOy;
②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;
(2)设l是过点C且平行于y轴的直线,
①点A关于直线l的对称点的坐标是 ;
②在直线l上找一点P,使最小,在图中标出此时点P的位置;
③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示).
3、如图,画出△ABC关于y轴对称的△A′B′C′,并写出点A′,B′,C′的坐标.
4、如图,这是某市部分建筑分布简图,若火车站的坐标为,市场的坐标为,请在图中画出平面直角坐标系,并分别写出超市、体育场和医院的坐标.超市的坐标为 ;体育场的坐标为 ;医院的坐标为 .
5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:
(1)请你画出将向右平移3个单位后得到对应的;
(2)再请你画出将沿x轴翻折后得到的;
(3)若连接、,请你直接写出四边形的面积.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、C
【解析】
【分析】
根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.
【详解】
解:设点P坐标为(x,y),
∵点P到x轴的距离是6,到y轴的距离是2,
∴|y|=6,|x|=2,
∵点P在第二象限内,
∴y=6,x=-2,
∴点P坐标为(-2,6),
故选:C.
【点睛】
本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.
3、C
【解析】
【分析】
根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.
【详解】
解:∵点关于轴对称的点是,
∵,
∴点关于轴对称的点在第三象限.
故选:C.
【点睛】
本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
4、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
5、A
【解析】
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
6、D
【解析】
【分析】
先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:∵点的横坐标3>0,纵坐标-4<0,
∴点P(3,-4)在第四象限.
故选:D.
【点睛】
本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7、B
【解析】
【分析】
利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.
【详解】
解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).
故选:B.
【点睛】
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
8、B
【解析】
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
9、D
【解析】
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
10、A
【解析】
【分析】
直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.
【详解】
解:∵点P(a,3)和点Q(4,b)关于x轴对称,
∴a=4,b=-3,
则a+b =4-3=1.
故选:A.
【点睛】
本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.
二、填空题
1、
【解析】
【分析】
如图,过点作一条垂直于轴的直线,过点作交点为,过点作交点为;有题意可知,,由D点坐标可知的长度,,进而可得结果.
【详解】
解:如图, 过点作一条垂直于轴的直线,过点作交点为,过点作交点为;
∴,,
∵,,
∴
在和中,
∴
∴
由D点坐标可知,
∴
故答案为:.
【点睛】
本题考查了全等三角形的判定与性质,坐标系中点的坐标等知识.解题的关键是找出所求线段的等价线段的值.
2、 象限 不属于 一 三 y轴
【解析】
略
3、7
【解析】
【分析】
根据点(x,y)到x轴的距离等于|y|求解即可.
【详解】
解:点M 到x轴距离为|-7|=7,
故答案为:7.
【点睛】
本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.
4、22020
【解析】
【分析】
根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
【详解】
解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
∴OA0=1,
∴点A1 的横坐标是 1=20,
∴OA1=2OA0=2,
∵∠A2A1O=90°,∠A2OA1=60°,
∴OA2=2OA1=4,
∴点A2 的横坐标是- OA2=-2=-21,
依次进行下去,Rt△OA2A3,Rt△OA3A4…,
同理可得:
点A3 的横坐标是﹣2OA2=﹣8=﹣23,
点A4 的横坐标是﹣8=﹣23,
点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
点A7 的横坐标是64=26,
…
发现规律,6次一循环,
即
,
,
2021÷6=336……5
则点A2021的横坐标与的坐标规律一致是 22020.
故答案为:22020.
【点睛】
本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
5、(2021,0)
【解析】
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
三、解答题
1、(1),;(2)(2,5);(3)(-5,0)
【解析】
【分析】
(1)结合题意,根据直角坐标系、坐标的性质分析,即可得到答案
(2)根据直角坐标系和轴对称的性质,坐标的横坐标取相反数,纵坐标保持不变,即可得到答案;
(3)设顶点B关于直线x=﹣1的对称点坐标:,根据直角坐标系和轴对称的性质,列一元一次方程并求解,即可得到答案.
【详解】
(1)点A坐标为:,点B坐标为:;
(2)根据题意,点C坐标为:
顶点C关于y轴对称的点C′的坐标:;
(3)设顶点B关于直线x=﹣1的对称点坐标:
∵点B坐标为:
∴
∴
∴顶点B关于直线x=﹣1的对称点坐标:.
【点睛】
本题考查了直角坐标系、轴对称、一元一次方程的知识;解题的关键是熟练掌握直角坐标系、坐标、轴对称的性质,从而完成求解.
2、(1)作图见解析,(1,2),(1,-2);(2)①(5,1);②P点位置见解析;③(2-m,n)
【解析】
【分析】
(1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数.
(2)由C点坐标(1,2)可知直线l为x=1
①点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1).
②由①可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点.
③设点Q(m,n)关于l的对称点为(x,y),则有(m+x)÷2=1,y=n,即可求得对称点(2-m,n)
【详解】
(1)平面直角坐标系xOy如图所示
由图象可知C点坐标为(1,2)
点是 C点关于x轴对称得来的
则的横坐标不变,纵坐标为C点纵坐标的相反数
即点坐标为(1,-2).
(2)如图所示,由C点坐标(1,2)可知直线l为x=1
①A点坐标为(-3,1),
关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变
则为坐标为(5,1)
②连接①所得B,B交直线x=1于点P
由两点之间线段最短可知PA1+PB为B时最小
又∵点是点A关于直线l的对称点
∴PA1=PA
∴为B时最小
故P即为所求点.
③设任意格点Q(m,n)关于直线x=1的对称点为(x,y)
有(m+x)÷2=1,y=n
即x=2-m,y=n
则纵坐标不变,横坐标为原来横坐标相反数加2
即对称点坐标为(2-m,n).
【点睛】
本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.
3、图见解析;A′(﹣2,4),B′(3,﹣2),C′(﹣3,1)
【解析】
【分析】
“关于y轴对称点的坐标特点是纵坐标不变,横坐标互为相反数”,据此先找出A,B,C三点的坐标,再确定点它们关于y轴对称的点A′,B′,C′的坐标;最后在坐标系内根据A′,B′,C′的坐标描点后,彼此连结各个点,即可画出△ABC关于y轴对称的△A′B′C′.
【详解】
解:如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1)
【点睛】
本题主要考查了直角坐标系内关于y轴对称点的坐标的求法,以及画关于y轴对称三角形的知识点.掌握“关于y轴对称的点的坐标的特点是纵坐标不变,横坐标互为相反数”这一知识,是正确作答本题的关键.
4、见解析,,,
【解析】
【分析】
根据火车站的坐标为,市场的坐标为确定原点的位置进而建立平面直角坐标系,根据坐标系写出超市、体育场和医院的坐标.
【详解】
解:所建平面直角坐标系,如图所示:超市的坐标为;
体育场的坐标为;
医院的坐标为.
故答案为:,,.
【点睛】
本题考查了实际问题中用坐标表示位置,确定原点建立平面直角坐标系是解题的关键.
5、(1)见解析;(2)见解析;(3)16
【解析】
【分析】
(1)利用平移的性质得出对应点位置进而得出答案;
(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;
(3)运用割补法求解即可
【详解】
解:(1)如图,即为所作;
(2)如图,即为所作;
(3)四边形的面积=12×(2+6)×4=16
【点睛】
此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了点在第四象限,则点在第几象限,点P关于y轴对称点的坐标是.,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共29页。试卷主要包含了已知点P的坐标为,如图是象棋棋盘的一部分,如果用,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试课时作业,共22页。试卷主要包含了在平面直角坐标系中,点P,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)