![2022年冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第1页](http://img-preview.51jiaoxi.com/2/3/12765940/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第2页](http://img-preview.51jiaoxi.com/2/3/12765940/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第3页](http://img-preview.51jiaoxi.com/2/3/12765940/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共24页。试卷主要包含了在平面直角坐标系xOy中,点M,在平面直角坐标系中,点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点和点关于轴对称,则的值为( )A.1 B. C. D.2、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.3、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角4、在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为( )A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)5、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是( )A. B. C. D.6、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.7、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为( )A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)8、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.10、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,点A(-3,0),B(-1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿y轴向下平移两个单位,得到△A′O′B′,其中点A′与点A对应,点B′与点B对应.则点B′的坐标为__________ .2、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.3、点关于y轴的对称点的坐标是______.4、若点,关于x轴对称,则b的值为______.5、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.2、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)3、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;4、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.(1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;(2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;①当时,用含的式子表示;②当时,的值为__________;③当时,直接写出的取值范围.5、如图,的顶点A,B分别在x轴,y轴上,;(1)若,且点B(0,2),C(-2,-1),①点C关于y轴对称点的坐标为______;②求点A的坐标;(2)若点B与原点重合,时,存在第三象限的点E和y轴上的点F,使,且A(3,0),C(0,m),F(0,n),线段EF的长度为,求AE的长. -参考答案-一、单选题1、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.2、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.3、D【解析】【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.4、B【解析】【分析】根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:第二象限的点到轴的距离是3,到轴的距离是2,点的横坐标是,纵坐标是3,点的坐标为.故选:B.【点睛】本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.5、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.6、C【解析】【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.7、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).8、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.9、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.10、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.二、填空题1、【解析】【分析】根据题意画出相应的图形即可解答.【详解】解:根据题意画出图形,如图所示:由图知,以原点O为旋转中心,将△AOB顺时针旋转90°,点B对应的坐标为(2,1),再沿y轴向下平移两个单位,对应的点B′坐标为(2,-1),故答案为:(2,-1).【点睛】本题考查坐标与图形变换-旋转、坐标与图形变换-平移,正确画出变换后的图形是解答的关键.2、22020【解析】【分析】根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),∴OA0=1,∴点A1 的横坐标是 1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21, 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:点A3 的横坐标是﹣2OA2=﹣8=﹣23,点A4 的横坐标是﹣8=﹣23,点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,点A7 的横坐标是64=26,…发现规律,6次一循环,即,,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020.故答案为:22020.【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.3、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.4、【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),据此即可求解.【详解】解:依题意可得a=-4,b=-3,故答案为:-3.【点睛】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.5、4或【解析】【分析】点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.【详解】解:∵B在x轴上,∴设 ,∵ ,∴ ,①当时,B点横坐标与A点横坐标相同,∴ ,∴ ,∴ ,②当时, ,∵点A坐标为,,∴ ,∴ ,解得: ,∴ ,∴ ,故答案为:4或.【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.三、解答题1、(1)见解析;(2).【解析】【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.2、 (1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.3、见解析【解析】【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键4、 (1)2,6(2)①=4-m;1,5;,【解析】【分析】(1)由对称的性质求得C、D点的坐标即可知.(2)由对称的性质求得G点坐标为(-1,4-m),H点坐标为(2,2-m)①因为,故4-m>2-m>0,则=4-m②需分类讨论和的值大小,且需要将所求m值进行验证.③需分类讨论,当,则且,当,则且,再取公共部分即可.(1)线段 上所有的点到轴的最大距离是2,则线段的界值线段AB关于直线对称后得到线段,C点坐标为(-1,6),D点坐标为(2,4),线段CD 上所有的点到轴的最大距离是6,则线段的界值(2)设G点纵坐标为a,H点纵坐标为b由题意有,解得a=4-m,b=2-m故G点坐标为(-1,4-m),H点坐标为(2,2-m)①当,4-m>2-m>0故=4-m②若,则即m=1或m=7当m=1时,,,符合题意当m=7时,,,,不符合题意,故舍去.若,则即m=-1或m=5当m=-1时,,,,不符合题意,故舍去当m=5时,,,符合题意.则时,的值为1或5.③当,则且故有, 解得,,解得故,解得故当,则且故有, 解得,,解得故,解得故综上所述,当时, 的取值范围为和.【点睛】本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m和2-m的大小关系,还有去绝对值的情况是解题的关键.的解集为,的解集为,.5、 (1)①(2,-1);②(3,0).(2)6.【解析】【分析】(1)①根据关于y轴对称的点纵坐标不变、横坐标变为原来的相反数即可解答;②设A点坐标为(a,0),再运用两点间距离公式求得BC的长,进而求得AB的长,然后根据两点间距离公式即可求解;(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M,则C(0,m)、H(0,-n)、m<0、n>0,进一步说明HC=EF;然后再证明△FEM≌△HCN得到FM=HN、EM=CN,证明Rt△AFM≌Rt△AHN得到AM=AN,进一步说明AE=AC,最后求得AC的长即可.(1)解:(1)①由关于y轴对称的点纵坐标不变、横坐标变为原来的相反数,则点C(-2,-1)关于y轴对称点的坐标为(2,-1);故答案是(2,-1);②设A点坐标为(a,0)∵B(0,2),C(-2,-1),∴BC=∴AB=BC=∴,解得a=3.∴点A的坐标为(3,0).(2)解:(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M, ∵C(0,m),H(0,-n),m<0,n>0,∴HC=OC-OH=-m-n,∵EF=-m-n,∴HC=EF,∵∠AEF=∠ACO=30°,∴∠FME=∠HNC,∴△FEM≌△HCN(AAS),∴FM=HN,EM=CN,在Rt△AFM和Rt△AHN中,AF=AH,FM=HN∴Rt△AFM≌Rt△AHN(HL),∴AM=AN,∴EM+AM=CN+AN,∴AE=AC,∵∠ACO=30°,A(3,0),∴OA=3,∴AC=2OA=6,∴AE=6.【点睛】本题主要考查了轴对称、两点间的距离公式、勾股定理、全等三角形的判定与性质等知识点,综合应用相关知识成为解答本题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共24页。试卷主要包含了点P关于y轴对称点的坐标是.,下列命题为真命题的是,下列说法错误的是等内容,欢迎下载使用。
这是一份初中数学第十九章 平面直角坐标系综合与测试精练,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,在平面直角坐标系中,已知点P,若点P,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试课时作业,共29页。试卷主要包含了在平面直角坐标系中,将点A等内容,欢迎下载使用。