数学冀教版第十九章 平面直角坐标系综合与测试课堂检测
展开
这是一份数学冀教版第十九章 平面直角坐标系综合与测试课堂检测,共22页。试卷主要包含了在平面直角坐标系xOy中,点A,若点P,在平面直角坐标系中,点等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、点关于轴对称点的坐标为( )A. B. C. D.3、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.5、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)6、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限7、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.8、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.9、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是( )A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(2,﹣5)10、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.2、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.3、点A(2,1)关于x轴对称的点B的坐标是______.4、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.5、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中,经过点M(0,m),且平行于x轴的直线记作直线y=m.我们给出如下定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得到点P',则称点P'称为点P关于x轴和直线y=m的二次反射点.(1)点A(5,3)关于x轴和直线y=1的二次反射点A'的坐标是 ;(2)点B(2,﹣1)关于x轴和直线y=m的二次反射点B'的坐标是(2,﹣5),m= ;(3)若点C的坐标是(0,m),其中m>0,点C关于x轴和直线y=m的二次反射点是C',求线段CC'的长(用含m的式子表示);(4)如图,正方形的四个顶点坐标分别为(0,0)、(2,0)、(2,2)、(0,2),若点P(1,4),Q(1,5)关于x轴和直线y=m的二次反射点分别为P',Q',且线段P'Q'与正方形的边没有公共点,直接写出m的取值范围.2、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积.4、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.(1)写出点Aʹ,Bʹ,Cʹ的坐标;(2)在图中画出平移后的三角形AʹBʹCʹ;(3)求三角形AʹBʹCʹ的面积.5、已知是经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示: (1)观察表中各对应点坐标的变化,确定______,______,______;(2)在平面直角坐标系中画出,,并求出的面积. -参考答案-一、单选题1、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】点关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.3、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是,∵,∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.4、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.6、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.8、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.9、A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).10、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.二、填空题1、(﹣3,﹣4)【解析】【分析】根据长方形的性质求出点C的横坐标与纵坐标,即可得解.【详解】如图,∵A(1,2),B(1,﹣4),D(﹣3,2),∴点C的横坐标与点D的横坐标相同,为﹣3,点C的纵坐标与点B的纵坐标相同,为﹣4,∴点D的坐标为(﹣3,﹣4).故答案为:(﹣3,﹣4).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.2、【解析】【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.3、【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.4、或【解析】【分析】借助坐标系内三角形底和高的确定,利用三角形面积公式求解.【详解】解:如图,S1=×|yP−yA|×1,S2=×2×1=1,∵S1≥S2,∴|yP-1|≥3,解得:yP≤-2或yP≥4.【点睛】本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.5、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题1、 (1)(5,5)(2)-2(3)(4)或或【解析】【分析】(1)根据二次反射点的定义直接得出答案;(2)根据二次反射点的定义得出,则,由此可得的值;(3)根据二次反射点的定义得出,则可得出答案;(4)根据二次反射点的定义得出,,由题意分两种情况列出不等式组,解不等式组可得出答案.【小题1】解:点,点关于轴对称得到点,点关于直线对称得到点.故答案为:.【小题2】点,点关于轴对称得到点,点关于直线对称得到点,,解得,故答案为:.【小题3】点的坐标是,点关于轴对称得到点,点关于直线对称得到点,即,.【小题4】由题意可知,点,关于轴和直线的二次反射点分别为,,且轴,,线段与正方形的边没有公共点,有三种情况:①,解得;②,解得;③,解得.综上,若线段与正方形的边没有公共点,则的取值范围或或.【点睛】本题考查了平面直角坐标系中坐标与图形变化,考查了正方形的性质,轴对称性质,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.2、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【解析】【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.4、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)见解析(3)△AʹBʹCʹ的面积为7.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用(1)中所求对应点位置画图形即可;(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.(1)解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)解:如图所示:△AʹBʹCʹ即为所求;(3)解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.【点睛】本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.5、 (1) 0, 2, 9;(2).【解析】【分析】(1)根据点平移的特征是上加下减,右加左减,由点A的纵坐标0到点A′的纵坐标2,确定向上平移2个单位,由点B的横坐标3到点B′横坐标7,确定向右平移4个单位,利用平移求出A(0,0),B(3,0),C(5,5),以及A′(4,2),B′(7,2),C′(9,7),得出a=0, b=2, c=9,画出图形即可;(2)先求出点A、B、C与A′、B′、C′坐标,描点,连线,求出三角形的底AB,和高CD,然后利用三角形面积公式计算即可(1)解:是经过平移得到的,由点A的纵坐标0到点A′的纵坐标2,可知是向上平移2个单位,由点B的横坐标3到点B′横坐标7,可知是向右平移4个单位,∴点A′向左平移4个单位,再向下平移2个单位是点A, ∴a=4-4=0,点A(0,0),点A′(4,2),∴点B向右平移4个单位,再向上平移2个单位是点B′,∴b=0+2=2,点B′(7,2),点B(3,0),∴点C向右平移4个单位,再向上平移2个单位是点C′,∴c=5+4=9,C′(9,7),点C(5,5),故答案为: 0, 2, 9;(2)解:由(1)得出A(0,0),B(3,0),C(5,5),A′(4,2),B′(7,2),C′(9,7),在平面直角坐标系中描点A(0,0),B(3,0),C(5,5),顺次连结AB、BC、CA,得△ABC,在平面直角坐标系中描点A′(4,2),B′(7,2),C′(9,7),顺次连结A′B′、B′C′、C′A′,得,过点C作x轴的垂线交x轴于D,AB=3-0=3,CD=5-0=5,∴S△ABC=.【点睛】本题考查平面直角坐标系中点的坐标,画图,平移性质,三角形面积,两点距离公式,掌握描点画图方法,点平移的特征,两点距离公式,三角形面积公式是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共29页。试卷主要包含了下列各点中,在第二象限的点是,下列命题中为真命题的是,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共29页。试卷主要包含了在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试课时训练,共26页。试卷主要包含了12,则第三边长为13;,点P关于y轴对称点的坐标是.,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。