冀教版八年级下册第十九章 平面直角坐标系综合与测试练习
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试练习,共25页。试卷主要包含了已知点和点关于轴对称,则的值为,如图是象棋棋盘的一部分,如果用,已知点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有( )A.6个 B.7个 C.8个 D.9个2、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )A. B. C. D.3、点关于轴对称点的坐标为( )A. B. C. D.4、已知点和点关于轴对称,则的值为( )A.1 B. C. D.5、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵6、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.27、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限8、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )A. B. C. D.9、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将点P(m+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为_________.2、如图,在平面直角在坐标系中,四边形OACB的两边OA,OB分别在x轴、y轴的正半轴上,其中,且CO平分,若,,则点C的坐标为______.3、已知点,是关于x轴对称的点,______.4、在平面直角坐标系中,如果点在y轴上,那么点M的坐标是______.5、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.2、如图,在平面直角坐标系中,点O为坐标原点,点中的横坐标x与纵坐标y满足,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标.3、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.4、已知三顶点在如图所示的平面直角坐标系中的网格点位置.(1)写出,,三点的坐标;(2)若各顶点的纵坐标都不变,横坐标都乘以,在同一坐标系中描出对应的点,,,并依次连接这三个点得;(3)求的面积.5、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD; -参考答案-一、单选题1、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.2、B【解析】【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.3、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】点关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.4、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.5、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.6、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.7、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.9、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.10、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、(1,0)【解析】略2、【解析】【分析】取AB的中点E,连接OE,CE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=,AO=BO=5;过点O作OG⊥OC交CA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点C作CH⊥x轴,垂足为H,设C(m,n),则OH=m,CH=n,AH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OE,CE并延长交x轴于点F,如图,∵,OC平分∠ACB,∴ ∵均为直角三角形,∴ ∴∴ ∴ ∵ ∴∴ ∴ ∴是等腰直角三角形,∴ ∵ 由勾股定理得, ∴ ∴ 过点O作OE⊥OC交CA的延长线于点G,∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,∴OC=OG,∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG,∵∠OCB=∠OEA=45°,∴△COB≌△GOA(ASA),∴BC=AG=,∵CG=AC+AG=∵△OCE为等腰直角三角形,∴OC=7过点C作CH⊥x轴于点H,设C(m,n),∴OH=m,CH=n,AH=5-m在Rt△CHO和Rt△CHA中,由勾股定理得,解得,,(负值舍去)∴C()故答案为:()【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.3、3【解析】【分析】根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.【详解】解:∵点,是关于x轴对称的点,∴b=-1,a+1=3,解得a=2,2-(-1)=3,故答案为:3.【点睛】此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.4、【解析】【分析】根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.【详解】解:在y轴上,,解得,,点M的坐标为.故答案为:.【点睛】本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.5、或【解析】【分析】根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C关于坐标轴翻折,分两种情况讨论:点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;故答案为:或.【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.三、解答题1、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)∵==8=,∴AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键.2、 (1)A(2,8),E(-6,0);(2)S=m+24;(3)点P坐标为(2,)或(2,)或(2,)【解析】【分析】(1)根据求出x,y,得到A的坐标,根据,求出OE得到E的坐标;(2)由DE=6=AD,求出OF=OE=6,根据平移的性质得到CD=8,G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8,求出HF=2,根据三角形DFG的面积为S=代入数值求出答案;(3)由求得 G(10,2),设运动时间为t秒,分两种情况:当时,当时,利用面积加减关系求出△FGP与△AGQ的面积,得方程求解即可.(1)解:∵,∴x-2=0,y-8=0,得x=2,y=8,∴A(2,8),∴AD=8,OD=2,∵,∴OE=8-2=6,∴E(-6,0);(2)解:∵OD=2,OE=6,∴DE=6=AD,∵AD⊥x轴,∴∠AED=∠EAD=45°,∵∠EOF=90°,∴∠EFO=45°=∠OEF,∴OF=OE=6,∵将线段AD向右平移8个单位长度,得到线段BC, ∴B(10,8),C(10,0),BC⊥x轴,x轴,CD=8,∴G(10,m),延长BA交y轴于H,则BH⊥y轴,则OH=AD=8, ∴HF=2,三角形DFG的面积为S===m+24; (3)解:当时,m+24=26,得m=2,∴G(10,2),设运动时间为t秒,当时,,,∵三角形FGP的面积是三角形AGQ面积的2倍,∴,得t=,∴P(2,);当时,, ,∴,得t=或t=,∴P(2,)或P(2,),综上,点P坐标为(2,)或(2,)或(2,).【点睛】此题考查了算术平方根的非负性,绝对值的非负性,线段平移的性质,三角形面积的计算公式,图形中动点问题,解题中注意运用分类思想解决问题是关键,避免漏解的现象.3、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.4、 (1),,;(2)见解析;(3)的面积为3.5.【解析】【分析】(1)根据点在坐标系中的位置可直接读出点的坐标;(2)纵坐标都不变,横坐标都乘以−1,得,,,然后依次连接即可得;(3)在方格点中利用正方形的面积减去三个三角形的面积即可得.(1)解:根据点在坐标系中的位置可得:,,;(2)解:纵坐标都不变,横坐标都乘以−1,可得:,,,然后依次连接,即为所求;(3)解:的面积为:,∴的面积为.【点睛】题目主要考查坐标与图形变换,点的变换等,理解题意,熟练掌握点的变换是解题关键.5、见解析【解析】【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共26页。试卷主要包含了点在第四象限,则点在第几象限,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份2021学年第十九章 平面直角坐标系综合与测试一课一练,共22页。试卷主要包含了已知点A,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共24页。试卷主要包含了点关于轴对称点的坐标为,若点P,下列各点中,在第二象限的点是等内容,欢迎下载使用。