搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版八年级数学下册第十九章平面直角坐标系同步练习试卷

    2022年最新精品解析冀教版八年级数学下册第十九章平面直角坐标系同步练习试卷第1页
    2022年最新精品解析冀教版八年级数学下册第十九章平面直角坐标系同步练习试卷第2页
    2022年最新精品解析冀教版八年级数学下册第十九章平面直角坐标系同步练习试卷第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级下册第十九章 平面直角坐标系综合与测试一课一练

    展开

    这是一份八年级下册第十九章 平面直角坐标系综合与测试一课一练,共29页。试卷主要包含了在平面直角坐标系xOy中,点A,如图是象棋棋盘的一部分,如果用,下列命题中为真命题的是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点A的坐标为,则点A在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限2、点关于轴对称的点是(  )A. B. C. D.3、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)4、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是(  )A. B.C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)5、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是(     A.将沿轴翻折得到B.将沿直线翻折,再向下平移个单位得到C.将向下平移个单位,再沿直线翻折得到D.将向下平移个单位,再沿直线翻折得到6、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是(  )A.相 B.马 C.炮 D.兵7、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.8、若点在第三象限内,则m的值可以是(       A.2 B.0 C. D.9、下列命题中为真命题的是(  )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣110、如图,树叶盖住的点的坐标可能是(   )A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.2、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角ABC,则点C的坐标为_______.3、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点______.4、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.5、已知点在一、三象限的角平分线上,则的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点分别在轴、轴上,设点轴上异于点的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设                          (1)直接写出的范围;(2)若点轴上的动点,结合图形,求(用含的式子表示);(3)当点轴上的动点时,求的周长的最小值,并说明此时点的位置.2、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点三点的坐标;(2)在轴、轴上找到与点距离相等的点(要求:尺规作图,不写画法,保留作图痕迹).3、在平面直角坐标系中,的三个顶点坐标分别是(1)画出(2)将平移,使点A平移到原点O,画出平移后的图形并写出点B和点C的对应点坐标.4、已知:如图1,在平面直角坐标系中,点,且的面积为16,点PC点出发沿y轴正方向以1个单位/秒的速度向上运动,连接(1)求出ABC三点的坐标;(2)如图2,若,以为边作等边,使位于的同侧,直线y轴、直线交于点EF,请找出线段之间的数量关系(等量关系),并说明理由.5、在平面直角坐标系中,Aa,0),Bb,0),Cc,0),a≠0且abc满足条件(1)直接写出△ABC的形状          (2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°① 如图1,当点E与点C重合时,求AD的长;② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标; -参考答案-一、单选题1、A【解析】【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、A【解析】【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.4、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.5、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A、根据图象可得:将沿x轴翻折得到,作图正确;B、作图过程如图所示,作图正确;C、如下图所示为作图过程,作图错误;D、如图所示为作图过程,作图正确;故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.6、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.7、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.8、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点Fb,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.10、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.二、填空题1、【解析】【分析】根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C关于坐标轴翻折,分两种情况讨论:C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:故答案为:【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.2、【解析】【分析】根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标【详解】解:如图,为直角顶点时,则,轴,,同理可得根据三线合一可得的中点,则综上所述,点C的坐标为故答案为:【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.3、(4,﹣2)【解析】【分析】由题意根据炮的坐标建立平面直角坐标系,然后写出马的坐标即可.【详解】解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查坐标确定位置,准确确定出坐标原点的位置是解题的关键.4、(【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵228=26,A22A6的位置在第三象限,且在经过点A2M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A2M的解析式为y=x+3,A22点在直线y=x+3上,第二个等腰直角三角形的边长为…,n个等腰直角三角形的边长为(n-1∴第22个等腰直角三角形的边长为(21,可得A22M=(21A21 A1=+1,A22 的横坐标为:A22 的纵坐标为:A22),故答案为:().【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.5、1【解析】【分析】直接利用一、三象限的角平分线上点横纵坐标相等进而得出答案.【详解】解:∵点Pa,2a−1)在一、三象限的角平分线上,a=2a−1,解得:a=1.故选:C【点睛】此题主要考查了点的坐标,正确掌握一、三象限的角平分线上点的坐标关系是解题关键.三、解答题1、 (1)(2)(3)只有当点轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出的度数即可;(3)当点在点之间时,过点轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,BNOC的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,所以,的范围是(2)解:当点在点之间时,此时BCOA∵∠MBN=45°,互余,当点在点的左边时,此时同理可得,当点在点的右边且在(8,0)左侧时,据题意,同理可得,(3)解:当点在点之间时,如图①,过点轴于点,又,而的周长为当点在点的左边时,如图②,必有,故当点在点的右边时,如图③,则,而综上所述,只有当点轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.2、(1)图见解析,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:(2)作BC的垂直平分线与轴、轴的交点即为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.3、 (1)画图见解析;(2)画图见解析,【解析】【分析】(1)根据即可画出(2)先画出平移后的,再写出点B1和点C1的坐标即可.(1)解:如图所示:即为所求.(2)解:平移后的如图所示:此时【点睛】本题考查了作图-平移变换,掌握平移的性质是解决本题的关键.4、 (1)(2),理由见解析【解析】【分析】1)由非负性判断出,进而得出,再由的面积求出,即可得出结果;2)先判断出,得出,进而判断出是等边三角形,得出,即可得出结论.(1)解:(1的面积为16(2)线段之间的数量关系为:,理由如下:上取一点,使,连接,如图2所示:是等边三角形,中,是等边三角形,中,即:【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、含30度角的直角三角形的性质、全等三角形的判定和性质、坐标与图形的性质、绝对值与平方的非负性等知识;解本题的关键是作出辅助线,构造全等三角形.5、(1)等腰三角形,证明见解析;(2)①;②【解析】【分析】(1)先证明 再证明 从而可得答案;(2)① 先证明是等边三角形,可得 再证明 再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFDAAS), 可得AC=EF,再求解BD=CF=CD=, 再求解OE=, 从而可得答案.【详解】解:(1) 解得: A,0),Bb,0),C(3,0), 是等腰三角形.(2)①ACB=120°,∠ADE=60°, 是等边三角形, ②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:AC=BC,∠ACB=120°, ∴∠ACO=∠BCO=60°, ∴△CDF是等边三角形, ∴∠CFD=60°,CD=FD∴∠EFD=120°, ∵∠ACO=∠ADE=60°,   ∴∠CAD=∠CED又∵∠ACD=∠EFD=120°, ∴△ACD≌△EFDAAS), AC=EF, 由(1)得:c=3, ∴OC=3, ∵∠AOC=90°,∠ACO=60°, ∴∠OAC=30°, BC=AC=2OC=6,EF=AC=6, CD=2BD, ∴BD=CF=CD=CE=EF+CF=OE=CE-OC=【点睛】本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键. 

    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共20页。试卷主要包含了在平面直角坐标系中,点P,点A关于轴的对称点的坐标是,在平面直角坐标系中,已知点P等内容,欢迎下载使用。

    2021学年第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份2021学年第十九章 平面直角坐标系综合与测试巩固练习,共29页。试卷主要包含了在平面直角坐标系xOy中,点A,点A的坐标为,则点A在,点A关于y轴的对称点A1坐标是,下列命题为真命题的是等内容,欢迎下载使用。

    2020-2021学年第十九章 平面直角坐标系综合与测试课后练习题:

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试课后练习题,共23页。试卷主要包含了在平面直角坐标系中,点P,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map