开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详解)

    2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详解)第1页
    2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详解)第2页
    2022年强化训练冀教版八年级数学下册第十九章平面直角坐标系专题训练试题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题

    展开

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共25页。试卷主要包含了在平面直角坐标系中,点A,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点(2,﹣5)关于x轴对称的点的坐标是(  )A.25 B.(﹣25 C.(﹣2,﹣5 D.2,﹣52、在平面直角坐标系中,点关于轴的对称点的坐标是(       A. B. C. D.3、在平面直角坐标系中,所在的象限是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限4、若点P位于平面直角坐标系第四象限,且点Px轴的距离是1,到y轴的距离是2,则点P的坐标为(          A. B. C. D.5、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△ABC′,则点P的坐标为(  )A.(0,4) B.(1,1) C.(1,2) D.(2,1)6、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是(  )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)7、平面直角坐标系中,点y轴的距离是(       A.1 B.2 C.3 D.48、已知点和点关于轴对称,则的值为(       A.1 B. C. D.9、在平面直角坐标系中,点轴上,则点的坐标为(       ).A. B. C. D.10、点在第四象限,则点在第几象限(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CDAB垂直且相等.(1)直接写出点D的坐标______;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.2、点P(5,﹣4)到x轴的距离是___.3、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.4、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.5、点轴的距离为______,到轴的距离为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出ABC关于y轴的对称图形(2)写出点的坐标;(3)若坐标轴上存在一点E,使EBC是以BC边为底边的等腰三角形,直接写出点E的坐标.(4)在y轴上找一点P,使PAPC的长最短.2、如图,在正方形网格中,每个小正方形的边长为1个单位长度,三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若内部一点,经过上述变换后,则内对应点的坐标为______.3、如图,在△ABC中,AC=2AB=4BC=6,点P为边BC上的一个动点(不与点BC重合),点P关于直线AB的对称点为点Q,联结PQCQPQ与边AB交于点D(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BPxCQy,求y关于x的函数解析式,并写出函数的定义域.4、在平面直角坐标系xOy中,对于PQ两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称PQ两点为同距点.图中的PQ两点即为同距点.(1)已知点A的坐标为(﹣3,1),①在点E(0,4),F(5,﹣1),G(2,2)中,为点A的同距点的是  ②若点Bx轴上,且AB两点为同距点,则点B的坐标为  ③若点Cm﹣1,﹣1)为点A的同距点,求m的值;(2)已知点S(﹣3,0),点T(﹣2,0).①若在线段ST上存在点Dn,﹣n﹣1)的同距点,求n的取值范围;②若点K为点T的同距点,直接写出线段OK长度的最小值.5、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.(1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;(2)如图2,过点CCDy轴交y轴于点D,点P为线段CD延长线上一动点,连接OPOE平分∠AOPOFOE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由. -参考答案-一、单选题1、A【解析】【分析】根据平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(2,﹣5)关于x轴对称的点的坐标.【详解】解:∵点(2,﹣5)关于x轴对称,∴对称的点的坐标是(2,5).故选:A【点睛】本题主要考查了关于x轴对称点的性质,点Pxy)关于x轴的对称点P′的坐标是(x,-y).2、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点Pxy)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.3、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.5、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)故选:C【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.6、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.7、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵∴点轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.8、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出的值,进而得出答案.【详解】解答:解:和点关于轴对称,故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出的值是解题关键.9、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点轴上,解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.10、C【解析】【分析】根据点Axy)在第四象限,判断xy的范围,即可求出B点所在象限.【详解】∵点Axy)在第四象限,x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣xy﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、          ##【解析】【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点AC对应,点BD对应时,如图:此时旋转中心P的坐标为(4,2);当点AD对应,点BC对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.2、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.3、【解析】【分析】的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.4、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),B点的横坐标为﹣2,又∵AB=5,B点的纵坐标为﹣1或9,B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.5、     5     2【解析】【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.三、解答题1、 (1)作图见解析(2)(3)(4)作图见解析【解析】【分析】(1)分别确定关于轴的对称点 再顺次连接即可;(2)根据图1的位置可得其坐标;(3)根据网格图的特点画的垂直平分线,则垂直平分线与坐标轴的交点符合要求;(4)由(1)得:关于轴对称,所以连接轴于 可得是符合要求的点.(1)解:如图1,是所求作的三角形,(2)解:由图1可得:(3)解:如图1,为等腰三角形,且为底边,根据网格图的特点画的垂直平分线交坐标轴于 (4)解:如图2,由(1)得:关于轴对称,所以连接轴于 此时最短,所以即为所求作的点.【点睛】本题考查的是轴对称的作图,线段垂直平分线的性质,等腰三角形的定义,利用轴对称的性质确定线段和的最小值,熟练的应用轴对称的性质是解本题的关键.2、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键.3、 (1)30°(2)(3)y(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:(2)解:关于直线的对称点为点垂直平分(3)解:过点于点为等边三角形,关于的函数解析式为【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.4、 (1)①EG;②(﹣4,0)或(4,0);③4或﹣2(2)①n≤1或﹣2≤n;②【解析】【分析】(1)①把各点的横纵坐标的绝对值相加得4,则是A的同距点;②因为点Bx轴上,所以设Bx,0),则|x|=4,可得结论;③根据同距点的定义得出关于m的方程,即可求解;(2)①根据已知,列出n的不等式,即可得到答案;②设Kxy),求出x2+y2的最小值,即可得到OK的最小值.(1)解:①∵点A的坐标为(﹣3,1),A到两坐标轴的距离之和等于4,∵点E(0,4)两坐标轴的距离之和等于4,F(5,﹣1)两坐标轴的距离之和等于6,G(2,2)两坐标轴的距离之和等于4,∴点A的同距点的是EG②点Bx轴上,设Bx,0),则|x|=4,x=±4,B(﹣4,0)或(4,0);③若点Cm﹣1,﹣1)为点A的同距点,则|m﹣1|+1=4,解得:m=4或﹣2.(2)解:①∵点S(﹣3,0),点T(﹣2,0),∴线段ST上的点到x轴、y轴距离的和大于等于2且小于等于3,而在线段ST上存在点Dn,﹣n﹣1)的同距点,∴2≤|n|+|﹣n﹣1|≤3,解得:n≤1或﹣2≤n②设Kxy),则OK,当x2+y2最小时,OK最小,∵点K为点T的同距点,∴|x|+|y|=2,x2+y2+2|xy|=4,∴2|xy|=4﹣(x2+y2)①,∵(|x|﹣|y|)2≥0,x2+y2﹣2|xy|≥0,即2|xy|≤x2+y2②,由①②可得4-(x2+y2)≤x2+y2x2+y2≥2,OK≥0,OK最小值为【点睛】本题借助平面直角坐标系中点的坐标特点考查新定义“同距点”,解题的关键是理解“同距点”的含义,灵活运用所学知识列方程、不等式解决问题.5、 (1)(2)2【解析】【分析】(1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.(1)+(a+2b﹣4)2=0.解得C(﹣1,2) ①若点轴上时,设COM的面积=ABC的面积,解得②若点轴上时,设COM的面积=ABC的面积,解得综上所述,点M的坐标为(2)的值不变,理由如下:CDy轴,ABy轴,∴∠CDO=∠DOB=90°,ABCD∴∠OPD=∠POBOFOE∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,OE平分∠AOP∴∠POE=∠AOE∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF∴∠OPD=2∠BOF=2∠DOE=2.【点睛】本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共21页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共22页。试卷主要包含了如果点P,下列命题为真命题的是,已知点P的坐标为等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共24页。试卷主要包含了下列命题为真命题的是,如图,,且点A,在平面直角坐标系中,A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map