搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系专项练习试卷(精选含详解)

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系专项练习试卷(精选含详解)第1页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系专项练习试卷(精选含详解)第2页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系专项练习试卷(精选含详解)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题

    展开

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共27页。试卷主要包含了在平面直角坐标系中,点等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知点P的坐标为(﹣2,3),则点Py轴的距离为(  )A.2 B.3 C.5 D.2、若点在第一象限,则a的取值范围是(       A. B. C. D.无解3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是(       A. B. C. D.4、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限5、如图,OA平分∠BODACOB于点C,且AC=2,已知点Ay轴的距离是3,那么点A关于x轴对称的点的坐标为(  )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)6、点P在第二象限内,点Px轴的距离是6,到y轴的距离是2,那么点P的坐标为(  )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)7、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是(       A. B. C. D.8、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)9、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是(       A. B. C. D.10、如果点P(﹣5,b)在第二象限,那么b的取值范围是(  )A.b≥0 B.b≤0 C.b<0 D.b>0第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、点 A(4,-3)关于 y 轴的对称点的坐标是______,关于原点对称的点的坐标是_________,到原点的距离是____.2、若|2x﹣4|+(y+3)2=0,点Axy)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.3、在平面直角坐标系中,点关于y轴的对称点的坐标为______.4、一般地,在平面直角坐标系中,将点(xy)向右平移a个单位长度,可以得到对应点_________;将点(xy)向左平移a个单位长度,可以得到对应点_________;将点(xy)向上平移b个单位长度,可以得到对应点_________;将点(xy)向下平移b个单位长度,可以得到对应点_________.5、如图,在平面直角坐标系xOy中,点A(-3,0),B(3,0),C(3,2),如果ABCABD全等,那么点D的坐标可以是____(写出一个即可).三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.2、如图,在平面直角坐标系xOy中有一个,其中点(1)若关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出的坐标.3、已知:如图1,在平面直角坐标系中,点,且的面积为16,点PC点出发沿y轴正方向以1个单位/秒的速度向上运动,连接(1)求出ABC三点的坐标;(2)如图2,若,以为边作等边,使位于的同侧,直线y轴、直线交于点EF,请找出线段之间的数量关系(等量关系),并说明理由.4、如图,在平面直角坐标系中,点O为坐标原点,B(0,n),点Ax轴的负半轴上,点Cm,0),且+|n﹣2|=0.(1)求∠BCO的度数;(2)点PA点出发沿射线AO以每秒2个单位长度的速度运动,同时,点QB点出发沿射线BO以每秒1个单位长度的速度运动,设APQ的面积为S,点P运动的时间为t,求用t表示S的代数式(直接写出t的取值范围);(3)在(2)的条件下,当点Px轴的正半轴上,连接AQBPPQ,∠BQP=2∠ABC=2∠OAQ,且四边形ABPQ的面积为25,求PQ的长.5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标. -参考答案-一、单选题1、A【解析】【分析】若点轴的距离为 轴的距离为 从而可得答案.【详解】解:点P的坐标为(﹣2,3),则点Py轴的距离为 故选A【点睛】本题考查的是点到坐标轴的距离,掌握“点的坐标与点到轴的距离的联系”是解本题的关键.2、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解:在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.3、B【解析】【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.5、D【解析】【分析】根据点Ay轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点Ax轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点Ay轴的距离是3,∴点A横坐标为-3,过点AAEOD,垂足为E∵∠DAO=∠CAOACOBAC=2,AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.6、C【解析】【分析】根据点(xy)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(xy),∵点Px轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.7、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.8、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.9、C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解【详解】解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,A的坐标是故选:C【点睛】本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.10、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.二、填空题1、     (-4,-3)     (-4,3)     5【解析】【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;由勾股定理求得两点间的距离.【详解】解:点A(4,-3)关于y轴的对称点的坐标是(-4,-3),关于原点对称的点的坐标是(-4,3),到原点的距离是:故答案是:(-4,-3);(-4,3);5.【点睛】此题主要考查了关于原点对称点的性质,关于坐标轴对称的点的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、(-2,3)【解析】【分析】依据非负数的性质,即可得到xy值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,x=2,y=-3,A(2,-3),∵点Axy)关于x轴对称的点为BB(2,3),∵点B关于y轴对称的点为CC(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、【解析】【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:点关于y轴对称的点的坐标是故选:【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.4、     xay     xay     xyb     xyb【解析】5、(3,-2)(答案不唯一)【解析】【分析】如图,把沿轴对折可得 再根据的位置确定其坐标即可.【详解】解:如图,把沿轴对折可得: 同理:把关于轴对折,可得: 综上:的坐标为:故答案为:(任写一个即可)【点睛】本题考查的是轴对称的性质,三角形全等的性质,坐标与图形,熟练的利用轴对称确定全等三角形的对应顶点是解本题的关键.三、解答题1、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点Bx轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点By轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)=8=ADOF=8,OF=4,又∵点Fy轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键.2、(1);(2)作图见解析;【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出ABC的对应点A2B2C2即可;【详解】解:(1)∵三个顶点坐标分别为:三个顶点坐标分别为:(2)如图所示:的坐标分别为:【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.3、 (1)(2),理由见解析【解析】【分析】1)由非负性判断出,进而得出,再由的面积求出,即可得出结果;2)先判断出,得出,进而判断出是等边三角形,得出,即可得出结论.(1)解:(1的面积为16(2)线段之间的数量关系为:,理由如下:上取一点,使,连接,如图2所示:是等边三角形,中,是等边三角形,中,即:【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、含30度角的直角三角形的性质、全等三角形的判定和性质、坐标与图形的性质、绝对值与平方的非负性等知识;解本题的关键是作出辅助线,构造全等三角形.4、 (1)(2)(3)5【解析】【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, 综上所述:(3)如图,过点,连接,则是等腰直角三角形是等腰直角三角形中,【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.5、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【解析】【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1 B1C1C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2 B2C2C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1 B1C1C1A1为所求,点B1(-5,-1);(2)∵关于轴对称的∴点的坐标特征是横坐标互为相反数,纵坐标不变,ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2 B2C2C2A2为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键. 

    相关试卷

    2021学年第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份2021学年第十九章 平面直角坐标系综合与测试巩固练习,共29页。试卷主要包含了在平面直角坐标系xOy中,点A,点A的坐标为,则点A在,点A关于y轴的对称点A1坐标是,下列命题为真命题的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了若点在轴上,则点的坐标为,在平面直角坐标系中,点,点A关于轴的对称点的坐标是等内容,欢迎下载使用。

    2020-2021学年第十九章 平面直角坐标系综合与测试练习题:

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了如图,,且点A,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map