![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12765981/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12765981/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12765981/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十九章 平面直角坐标系综合与测试当堂达标检测题
展开
这是一份2021学年第十九章 平面直角坐标系综合与测试当堂达标检测题,共27页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.22、如图,树叶盖住的点的坐标可能是( )A. B. C. D.3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点4、已知点在x轴上,点在y轴上,则点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.6、点在第( )象限.A.一 B.二 C.三 D.四7、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)9、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )A. B. C. D.10、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点到轴的距离是________.2、已知点在一、三象限的角平分线上,则的值为______.3、在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点.如图,点的坐标为(,4),点的坐标为(,1),点为第一象限内的整点,不共线的,,三点构成轴对称图形,则点的坐标可以是______(写出一个即可),满足题意的点的个数为________.4、如图,在中,,顶点A的坐标为,P是上一动点,将点P绕点逆时针旋转,若点P的对应点恰好落在边上,则点的坐标为________.5、已知点,则点到轴的距离为______,到轴的距离为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设. (1)直接写出的范围;(2)若点为轴上的动点,结合图形,求(用含的式子表示);(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.2、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.(1)直接写出△ABC的形状 ;(2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°① 如图1,当点E与点C重合时,求AD的长;② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;3、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标.4、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.(1)若与关于y轴对称,画出;(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.5、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标: ;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2. -参考答案-一、单选题1、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.2、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.3、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、B【解析】【分析】根据题意,结合坐标轴上点的坐标的特点,可得m、n的值,进而可以判断点所在的象限.【详解】解:∵点在x轴上,∴,解得:,∵点在y轴上,∴解得:,∴点的坐标为,即在第二象限.故选:B.【点睛】本题主要考查坐标轴上点的特点,并能根据点的坐标,判断其所在的象限,理解坐标轴上点的特点是解题关键.5、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.6、D【解析】【分析】第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.【详解】解:点在第四象限.故选:D.【点睛】本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.7、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.8、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.9、C【解析】【分析】到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.【详解】解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,∴到△ABC三个顶点距离相等的点的坐标为(0,0),故选:C.【点睛】本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.10、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.二、填空题1、2【解析】【分析】由点到坐标轴的距离定义可知点到轴的距离是2.【详解】解:∵点A的纵坐标为-2∴点到轴的距离是故答案为:2.【点睛】本题考查了点到坐标轴的距离,点P的坐标为,那么点P到x轴的距离为这点纵坐标的绝对值,即,点P到y轴的距离为这点横坐标的绝对值,即.2、1【解析】【分析】直接利用一、三象限的角平分线上点横纵坐标相等进而得出答案.【详解】解:∵点P(a,2a−1)在一、三象限的角平分线上,∴a=2a−1,解得:a=1.故选:C.【点睛】此题主要考查了点的坐标,正确掌握一、三象限的角平分线上点的坐标关系是解题关键.3、 (,)(答案不唯一) 7【解析】【分析】根据题意建立平面直角坐标系,进而根据题意找等腰三角形即可【详解】建立如下坐标系,如图,则点如图,根据题意不共线的,,三点构成轴对称图形,则是等腰三角形,根据等腰三角形的性质可得这样的点有7个,分别为:故答案为:(3,1);7【点睛】本题考查了等腰三角形的判定,轴对称的性质,将题目转化为找等腰三角形是解题的关键.4、【解析】【分析】过点作轴,垂足为,证明,可得的长度,进而求得点的坐标.【详解】解:如图,过点作轴,垂足为,将点P绕点逆时针旋转,点P的对应点恰好落在边上,,,顶点A的坐标为,是等腰直角三角形故答案为:【点睛】本题考查了全等三角形的性质与判定,坐标与图形,旋转的性质,等腰三角形的性质与判定,添加辅助选构造全等是解题的关键.5、 2 3【解析】【分析】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.【详解】∵点的坐标为,∴点到轴的距离为,到轴的距离为.故答案为:2;3【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.三、解答题1、 (1)或(2)或(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点在轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出或的度数即可;(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点,∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,∴BN∥OC,∴的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;所以,的范围是或;(2)解:当点在点、之间时,此时,∵BC∥OA,∴,∵∠MBN=45°,∴,,∵与互余,,当点在点的左边时,此时,同理可得,,;当点在点的右边且在(8,0)左侧时,据题意,同理可得,,则,;(3)解:当点在点、之间时,如图①,过点作且交轴于点,,,,又,,,,,又,,,,而的周长为,当点在点的左边时,如图②,必有,,,而,,故,当点在点的右边时,如图③,则,,,而,,,综上所述,只有当点在轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.2、(1)等腰三角形,证明见解析;(2)①;②【解析】【分析】(1)先证明 再证明 从而可得答案;(2)① 先证明是等边三角形,可得 再证明 再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=,CF=CD=, 再求解OE=, 从而可得答案.【详解】解:(1) , 解得: A(,0),B(b,0),C(3,0), 而 是等腰三角形.(2)① ∠ACB=120°,∠ADE=60°, 是等边三角形, ②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:∵AC=BC,∠ACB=120°, ∴∠ACO=∠BCO=60°, ∴△CDF是等边三角形, ∴∠CFD=60°,CD=FD, ∴∠EFD=120°, ∵∠ACO=∠ADE=60°, ∴∠CAD=∠CED, 又∵∠ACD=∠EFD=120°, ∴△ACD≌△EFD(AAS), ∴AC=EF, 由(1)得:c=3, ∴OC=3, ∵∠AOC=90°,∠ACO=60°, ∴∠OAC=30°, ∴BC=AC=2OC=6,EF=AC=6, ∵CD=2BD, ∴BD=,CF=CD=, ∴CE=EF+CF=, ∴OE=CE-OC=, ∴【点睛】本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.3、 (1)见解析(2)A1(1,5),B1(1,0),C1(4,3)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(1)解:所作图形△A1B1C1如下所示:(2)解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.4、 (1)见解析(2)【解析】【分析】(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.(1)解:如图所示,即为所求;(2)解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,由图可知点P的坐标为(3,3).【点睛】本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.5、(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
相关试卷
这是一份初中数学第十九章 平面直角坐标系综合与测试课后复习题,共29页。试卷主要包含了已知点P,如图是象棋棋盘的一部分,如果用,在平面直角坐标系xOy中,点M等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共22页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份2020-2021学年第十九章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了如图,,且点A,在平面直角坐标系中,点P,已知点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)