搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(精选)

    2022年最新冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(精选)第1页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(精选)第2页
    2022年最新冀教版八年级数学下册第十九章平面直角坐标系重点解析练习题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OA平分∠BODACOB于点C,且AC=2,已知点Ay轴的距离是3,那么点A关于x轴对称的点的坐标为(  )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)2、若点P位于平面直角坐标系第四象限,且点Px轴的距离是1,到y轴的距离是2,则点P的坐标为(          A. B. C. D.3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为(       A. B. C. D.4、已知点x轴上,点y轴上,则点位于(       A.第一象限 B.第二象限 C.第三象限 D.第四象限5、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的(       A.正东方向 B.正西方向 C.正南方向 D.正北方向6、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(  )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)7、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为(       A. B. C. D.8、如图,在平面直角坐标系中,已知点,对连续作旋转变换依次得到三角形(1),(2),(3),(4),,则第2020个三角形的直角顶点的坐标是(       A. B. C. D.9、在平面直角坐标系中,点P(-3,-3)在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限10、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(       A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点关于y轴的对称点的坐标为______.2、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点Ma﹣2,a+1)在第二象限,则a的值为 _____.3、若点x轴上,写出一组符合题意的mn的值______.4、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,(1)当△ABP成为等边三角形时,点 P的坐标为________.(2)若∠APB<45°,则 t的取值范围为_______.5、在平面直角坐标系中,点A坐标为,点Bx轴上,若是直角三角形,则OB的长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中有点A(-1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角ABC,设点C的坐标为(cd).(1)当a=2时,则C点的坐标为     (2)动点B在运动的过程中,试判断cd的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.2、如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出ABC 关于 y 轴对称的A1B1C1(2)写出 A1B1C1 的坐标(直接写出答案),A1     B1     C1       (3)A1B1C1 的面积为     3、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C24、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.(1)画出关于x轴对称的图形并写出顶点的坐标;(2)已知Py轴上一点,若的面积相等,请直接与出点P的坐标.5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C(2)△ABC的面积是        (3)在y轴上有一点D,且SACDSABC,则点D的坐标为         -参考答案-一、单选题1、D【解析】【分析】根据点Ay轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点Ax轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点Ay轴的距离是3,∴点A横坐标为-3,过点AAEOD,垂足为E∵∠DAO=∠CAOACOBAC=2,AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.2、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.3、C【解析】【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、B【解析】【分析】根据题意,结合坐标轴上点的坐标的特点,可得mn的值,进而可以判断点所在的象限.【详解】解:∵点x轴上,解得:∵点y轴上,解得:∴点的坐标为,即在第二象限.故选:B.【点睛】本题主要考查坐标轴上点的特点,并能根据点的坐标,判断其所在的象限,理解坐标轴上点的特点是解题关键.5、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.6、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.7、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点AACOBC,∠AOB=A,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转∴第1秒时,点A的对应点的坐标为∵三角板每秒旋转∴此后点的位置6秒一循环,∴则第2022秒时,点A的对应点的坐标为故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.8、C【解析】【分析】利用勾股定理列式求出的长,再根据图形写出第(3)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2020除以3,根据商和余数的情况确定出第个三角形的直角顶点到原点的距离,然后写出坐标即可.【详解】解:三角形(3)的直角顶点坐标为:第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合第2020个三角形的直角顶点的坐标是故选:C.【点睛】本题考查了坐标与图形变化旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组,依次循环是解题的关键.9、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).10、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.二、填空题1、【解析】【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:点关于y轴对称的点的坐标是故选:【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.2、0或1##1或0【解析】【分析】根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.【详解】解:∵点Ma﹣2,a+1)在第二象限,a-2<0,a+1>0,∴-1<a<2,∵点M为格点,a为整数,即a的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.3、(答案不唯一)【解析】【分析】根据轴上点的坐标特点,纵坐标为0,即可求解.【详解】解:根据轴上点的坐标特点,纵坐标为零即可,即x轴上,故答案是:(答案不唯一).【点睛】本题考查了轴上点的坐标特点,解题的关键是掌握在轴上点的坐标的纵坐标为0.4、     (0,)或(0,-);     t>2+t<-2-【解析】【分析】(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;(2)分两种情况,点Px轴上方,∠APB=45°,根据点Py轴上,OA=OB=2,可得OPAB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOCPCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点Px轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.【详解】解:(1)∵ABP成为等边三角形,点A(2,0),B(-2,0),AP=AB=2-(-2)=2+2=4,在RtOAP中,点P(0,t),根据勾股定理,即解得∴点P(0,)或(0,-),故答案为(0,)或(0,-);(2)分两种情况,点Px轴上方,∠APB=45°,∵点Py轴上,OA=OB=2,OPAB的垂直平分线,AP=BP∴∠APO=∠BPO=22.5°,y轴的正半轴上截取OC=OA=2,∠AOC=90°,∴△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=∵∠AOCPCA的外角,∴∠ACO=∠CPA+∠CAP=45°,∵∠APO=22.5°,∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,∴∠CPA=∠CAPCP=AC=OP=OC+CP=2+∴点P(0,2+当∠APB<45°时,t>2+当点Px轴下方,利用轴对称性质,P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-综合得∠APB<45°,则 t的取值范围为t>2+t<-2-故答案为t>2+t<-2-【点睛】本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.5、4或【解析】【分析】Bx轴上,所以 ,分别讨论,两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.【详解】解:∵Bx轴上,∴设①当时,B点横坐标与A点横坐标相同,②当时,∵点A坐标为解得:故答案为:4或【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.三、解答题1、 (1)(-2,3)(2)不变,1【解析】【分析】(1)过点CCEy轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=2,AE=BO=1,即可得出点C的坐标;(2)过点CCEy轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=aAE=BO=1,从而OE=a=1,即可得出点C的坐标为(-aa+1),据此可得c+d的值不变.(1)解:如图1中,过点CCEy轴于E,则∠CEB=∠BOA∵△ABC是等腰直角三角形,BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△ABO中,∴△BCE≌△ABO(AAS),A(-1,0),B(0,2),AO=BE=1,OB=EC=2,OE=1+2=3,C(-2,3),故答案为:(-2,3); (2)解:动点A在运动的过程中,cd的值不变. 如图2,过点CCEy轴于E,则∠CEB=∠BOA∵△ABC是等腰直角三角形,BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△ABO中,∴△BCE≌△ABO(AAS),A(-1,0),B(0,a),BE=AO=1,CE=BO=aOE=1+aC(-a,1+a),又∵点C的坐标为(cd),cd=-a+1+a=1,即cd的值不变.   【点睛】本题主要考查了全等三角形的性质和判定,余角的性质,坐标与图形,以及等腰直角三角形性质等知识,解决问题的关键是作辅助线构造全等三角形.2、 (1)见解析(2)(-1,2),(-3,1),(2,-1)(3)4.5【解析】【分析】(1)根据网格结构找出点ABC的对应点A1B1C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.(1)A1B1C1如图所示;(2)根据图形得,A1(-1,2),B1(-3,1),C1(2,-1),故答案为:(-1,2),(-3,1),(2,-1);(3)A1B1C1的面积=5×3-×1×2-×2×5-×3×3,=15-1-5-4.5,=15-10.5,=4.5.故答案为:4.5【点睛】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.3、1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);2)如图所示,△A1B1C1即为所求.3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.4、 (1)作图见解析,A1(0,-1),C1(4,-4)(2)(0,6)或(0,-4)【解析】【分析】(1)分别作出ABC的对应点A1B1C1即可.(2)设P(0,m),构建方程求解即可.(1)解:作出ABC关于x轴对称的A1B1C1如图所示.A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).(2) P(0,m),由题意,解得m=6或-4,∴点P的坐标为(0,6)或(0,-4).【点睛】本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)SACDSABC为同底不同高,故由(2)问知,再由点Dy轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵SACDSABCAC=ACD点的纵坐标为4或-4又∵D点在y轴上D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想. 

    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了已知点A,下列说法错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共24页。试卷主要包含了点A的坐标为,则点A在,若点P等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试达标测试:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试达标测试,共25页。试卷主要包含了在平面直角坐标系中,点在,点关于轴对称点的坐标为等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map