数学八年级下册第十九章 平面直角坐标系综合与测试综合训练题
展开
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共26页。试卷主要包含了若点在轴上,则点的坐标为,在平面直角坐标系中,A,在下列说法中,能确定位置的是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是( )A. B. C. D.2、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.4、若点在轴上,则点的坐标为( )A. B. C. D.5、点与点Q关于y轴对称,则点Q的坐标为( )A. B. C. D.6、如图,在平面直角坐标系中,将等边绕点A旋转180°,得到,再将绕点旋转180°,得到,再将绕点旋转180°,得到,…,按此规律进行下去,若点,则点的坐标为( )A. B. C. D.7、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)8、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有( )A.6个 B.7个 C.8个 D.9个9、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号10、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P为顶点的三角形与OAB全等,则满足条件的P点的坐标是________.2、点关于y轴的对称点的坐标是______.3、如图,是某学校的平面示意图.如果用(5,1)表示学校大门的位置,那么运动场表示为_____,(8,5)表示的场所是_____________. 4、已知点是第二象限的点,则的取值范围是______.5、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移3个单位长度,再向左平移1个单位长度得到三角形AʹBʹCʹ,点A,B,C的对应点分别为Aʹ,Bʹ,Cʹ.(1)写出点Aʹ,Bʹ,Cʹ的坐标;(2)在图中画出平移后的三角形AʹBʹCʹ;(3)求三角形AʹBʹCʹ的面积.2、如图,若三角形是由三角形平移后得到的,且三角形中任意一点经过平移后的对应点为,,,.(1)画出三角形;(2)写出点的坐标 ;(3)直接写出三角形的面积 ;(4)点在轴上,若三角形的面积为6,直接写出点的坐标 .3、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点,,三点的坐标;(2)在轴、轴上找到与点、距离相等的点,.(要求:尺规作图,不写画法,保留作图痕迹).4、在平面直角坐标系xOy中,将点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”.(1)点的“相对轴距”______;(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;(3)已知点,,,点M,N是内部(含边界)的任意两点.①直接写出点M与点N的“相对轴距”之比的取值范围;②将向左平移个单位得到,点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.5、如图1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,点P在直线AB上,点A、P的坐标分别为,,且a、b是二元一次方程组的解.(1)求出A、P的坐标;(2)求OB的长;(3)如图2,点C在第一象限,,且,,动点M从点C出发,以每秒2个单位长度的速度向点B匀速运动,到达点B(无停留,速度保持不变)再沿射线BO匀速运动,动点N从点A出发,以每秒5个单位长度的速度沿射线AB方向匀速运动,点M、N同时出发,当的面积等于的面积的2倍时,求的面积. -参考答案-一、单选题1、C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解【详解】解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,,,点A的坐标是,故选:C.【点睛】本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.3、C【解析】【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.5、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.6、C【解析】【分析】根据题意先求得的坐标,进而求得的坐标,发现规律,即可求得的坐标.【详解】解:∵是等边三角形,,将等边绕点A旋转180°,得到,∴,则同理可得,……,即故选C【点睛】本题考查了等边三角形的性质,旋转的性质,含30度角的直角三角形的性质,勾股定理,坐标与图形,找到规律是解题的关键.7、C【解析】【分析】根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(x,y),∵点P到x轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,∴y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.8、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.9、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.10、C【解析】【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题1、或##或【解析】【分析】根据题意,这两个三角形中为公共边,故分,两种情况讨论,根据题意作出图形,进而求得点的坐标【详解】解:如图,①作关于的对称的点,连接 B(4,2),则②作关于()对称的点,连接,则又则点故答案为:或【点睛】本题考查了坐标与图形,全等三角形的性质与判定,轴对称的性质,掌握轴对称的性质是解题的关键.2、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.3、 (6,8) 宿舍楼【解析】略4、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.5、【解析】【分析】利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.【详解】解:∵AC⊥OB,∴ ∵∠AOB=60°,∴ ∵OA=4,∴ 在Rt△ACO中, ∴ 故答案为:【点睛】本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.三、解答题1、 (1)Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)见解析(3)△AʹBʹCʹ的面积为7.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用(1)中所求对应点位置画图形即可;(3)利用△AʹBʹCʹ所在矩形面积减去周围多余三角形的面积进而得出答案.(1)解:根据平移的性质得: Aʹ(-3,1),Bʹ(2,4),Cʹ(-1,5);(2)解:如图所示:△AʹBʹCʹ即为所求;(3)解:△AʹBʹCʹ的面积为:4×5-×2×4-×1×3-×3×5=7.【点睛】本题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.2、 (1)见解析(2)(3)2.5(4)或【解析】【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点A1的位置写出坐标即可.(3)利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.(4)设M(m,0),构建方程求出m即可.(1)如图,画出三角形即为所求.(2)点的坐标.故答案为:;(3)直接写出三角形的面积,故答案为:2.5.(4)设,则有,解得,或.故答案为:或.【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.3、(1)图见解析,,,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,,,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:点,,.(2)作BC的垂直平分线与轴、轴的交点即为,【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.4、 (1)2;(2)见详解;(3)①;②【解析】【分析】(1)根据题意正确写出答案即可;(2)根据题意画出图形即可;(3)①正确画出图形,根据题意分别求出,的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.(1)解:点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,点 2;(2)解:的“相对轴距”是2,与点的“相对轴距”相等的点的横纵坐标的最大值为2,依题意得到的图形是正方形,如图,(3)解:①如图,当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”, 当取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合, 的最小值为1,的最大值为3时,的最小值为,当取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,的最大值为3,的最小值为1时,的最大值3, ; ② 点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,依题意,点的坐标为, 点在两点(1,1),(-1,1)确定的线段上,, .【点睛】本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.5、 (1)A(8,0),P(-4, 9)(2)6;(3)24或60【解析】【分析】(1)解方程组可求a, b的值,即可求解;(2)由面积关系可求解;(3)分两种情况讨论,由面积法可求OE的长,由面积关系可求解.(1)解: 解这个方程组得: ∴2a=2×4=8,-a=-4,3b=3×3=9,∴A(8,0),P(-4, 9);(2)如图1,过点P作PH⊥x轴于H,连接BH,∵A(8,0),P(-4, 9),∴OA=8,ОН=4,PH=9,∴S△APH = S△ABH + SPHB ,∴ ∴OB=6;(3)设运动时间为ts,∴BC=OВ,∴BC= 4,当0≤ t ≤2吋,如图2,过点O作OE⊥AB于 E,∴S△AOB= ∴ ∴S△AON = ∴S△ABM= ∵△ AON的面积等于△ABM的面积的2倍,∴12t=2 (12-6t),∴t= 1,∴S△PON = S△AOP-S△AON =;当t > 2时,如图3,∴S△ABM= , ∵△ AON的面积等于△ABM的面积的2倍,∴12t=2×(8t- 16),∴t= 8,∴S△PON = S△AON-S△AOP =;综上所述:△PON的面积为24或60.【点睛】本题考查了平面直角坐标系,三角形综合题,二元一次方程组的应用,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共24页。试卷主要包含了在平面直角坐标系xOy中,点A,已知点A等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共24页。试卷主要包含了在平面直角坐标系中,将点A,在平面直角坐标系中,点P,点A的坐标为,则点A在等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,点A等内容,欢迎下载使用。