初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共26页。试卷主要包含了在平面直角坐标系中,将点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)2、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点4、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )A. B. C. D.5、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)6、平面直角坐标系中,点到y轴的距离是( )A.1 B.2 C.3 D.47、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.8、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )A. B. C. D.9、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )A. B. C. D.10、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.2、在平面直角坐标系中,点P(7,6)关于x轴对称点P′的坐标是 _____.3、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.4、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______5、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知在平面直角坐标系中xOy中,点A(﹣4,0),点B(2n﹣10,m+2),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合.(1)求点B的坐标;(2)将点B向右平移3个单位后得到的点记为点C,点C恰好在直线x=b上,点D在直线x=b上,当△BCD是等腰三角形时,求点D的坐标.2、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.3、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;4、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为S的ABC沿直线l折叠,重合部分的图形为,将的面积记为,则称为ABC关于直线l的对称度.在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m,0)作垂直于x轴的直线,①当时,ABC关于直线的对称度的值是 :②若ABC关于直线的对称度为1,则m的值是 .(2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.5、设两个点A、B的坐标分别为,,则线段AB的长度为:.举例如下:A、B两点的坐标是,,则A、B两点之间的距离.请利用上述知识解决下列问题:(1)若,,且,求x的值;(2)已知△ABC,点A为、点B为、点C为,求△ABC的面积;(3)求代数式的最小值. -参考答案-一、单选题1、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.2、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.3、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.5、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.6、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵,∴点到轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.7、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.8、A【解析】【分析】根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.【详解】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=,……,OA1033=,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1033=8×129+1,∴点A1033在x轴负半轴,∵OA1033=,∴点A1033的坐标为:,故选:A.【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.9、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.10、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、(7,-6)【解析】【分析】在平面直角坐标系中,关于x轴对称点的特征是横坐标不变,纵坐标变为原数的相反数,据此解题.【详解】解:点P(7,6)关于x轴对称点P′的坐标是(7,-6)故答案为:(7,-6).【点睛】本题考查平面直角坐标系中关于x轴对称点的特征,是基础考点,掌握相关知识是解题关键.3、 3 【解析】【分析】根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.【详解】解:∵点与点关于y轴对称,∴,,故答案为:3;.【点睛】题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.4、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.5、1【解析】【分析】先求出点A向上平移两个单位后的坐标为,x轴上点坐标的特征即可求出m的值.【详解】∵,∴将点A向上平移两个单位后的坐标为,∵在x轴上,∴,解得:.故答案为:1.【点睛】本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.三、解答题1、 (1)B的坐标(-2,4)(2)D的坐标(1,7)或(1,1)【解析】【分析】(1)向右平移m(m>0)个单位,横坐标加m,向上平移n(n>0)个单位,纵坐标加n,根据点B(2n-10,m+2),列出二元一次方程组,得到m、n的值,即可得到点B的坐标;(2)先求出点C的坐标和直线x=b中b的值,设点D(1,x),根据,列出方程,求解即可得到D的坐标.(1)解:∵点A(-4,0),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合,∴点B(-4+m,0+n),又∵点B(2n-10,m+2),∴,解得,∴点B(-2,4).(2)解:∵点B(-2,4),点B向右平移3个单位后得到的点记为点C,∴点C(1,4),∵点C恰好在直线x=b上,∴b=1,直线x=1,∵点D在直线x=1上,∴,设点D(1,x),∵△BCD是等腰三角形,∴,∴,解得或,∴D的坐标(1,7)或(1,1).【点睛】本题考查点的平移引起的点的坐标变化规律.点左右平移只影响横坐标的变化,点上下平移只影响纵坐标的变化.具体如下:设一个点的坐标为(m,n),①若把这个点向左平移k(k>0)个单位后,坐标变为(m-k,n);若把这个点向右平移k个单位后,坐标则变为(m+k,n).②若把这个点向上平移k(k>0)个单位后,坐标变为(m,n+k);若把这个点向下平移k个单位后,坐标则变为(m,n- k).2、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.3、见解析【解析】【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键4、(1)①;②0;(2);(3)4或1【解析】【分析】(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到;(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分;;,同时需要满足t的值为整数.【详解】解:(1)①当时,根据题意作图如下:,为等腰直角三角形,,,根据折叠的性质,,,关于直线的对称度的值是:,故答案是:;②如图:根据等腰三角形的性质,当时,有,ABC关于直线的对称度为1,故答案是:0;(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,则需要使得最大,如下图:当时,取到最大,根据,可得为的中位线,,,△ABC关于直线的对称度的最大值为:;(3)若存在直线,使得APQ关于该直线的对称度为1,即为等腰三角形即可,①当时,为等腰三角形,如下图:,;②当时,为等腰三角形,如下图:,;③当时,为等腰三角形,如下图:设,则,根据勾股定理:,,解得:,(不是整数,舍去),综上:满足题意的整数的值为:4或1.【点睛】本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.5、 (1)或(2)△ABC的面积为5(3)13【解析】【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得AB、BC、AC的线段长度,利用勾股定理的逆定理可判断出△ABC为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点与点的距离和点与点的距离之和,最短为点与点的距离之和,依此求解.(1)解:∵∴又∵,,且,∴,即或.(2)解:,,,∴,∴△ABC为直角三角形,∴.(3)解:∵∴该代数式可看成是点与点的距离和点与点的距离之和,当点在点与点连接的线段上时最短为,故的最小值为13.【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题.(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点和点不是唯一的,但因为点的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点才有可能在它们连接后的线段上.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试精练,共24页。试卷主要包含了已知点A,若平面直角坐标系中的两点A,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共25页。试卷主要包含了在平面直角坐标系中,点A,若点在轴上,则点的坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共23页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,点P等内容,欢迎下载使用。