初中数学第十九章 平面直角坐标系综合与测试课堂检测
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试课堂检测,共25页。试卷主要包含了如图,,且点A,在平面直角坐标系中,将点A等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点向上平移2个单位后与点关于y轴对称,则( ).
A.1B.C.D.
2、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为( )
A.B.C.D.
3、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3)B.(-2,3)
C.(-3,2)或(-3,-2)D.(-3,2)
4、如图,,且点A、B的坐标分别为,则长是( )
A.B.5C.4D.3
5、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )
A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)
6、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )
A.B.C.D.
7、在平面直角坐标系中,点关于轴对称的点的坐标是( )
A.B.C.D.
8、如果点在第四象限内,则m的取值范围( )
A.B.C.D.
9、若点在第三象限内,则m的值可以是( )
A.2B.0C.D.
10、如图,树叶盖住的点的坐标可能是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.
2、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.
3、如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为______.
4、已知点M坐标为,点M到x轴距离为______.
5、如图,在平面直角坐标系xOy中,点A(-3,0),B(-1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿y轴向下平移两个单位,得到△A′O′B′,其中点A′与点A对应,点B′与点B对应.则点B′的坐标为__________ .
三、解答题(5小题,每小题10分,共计50分)
1、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
(1)①表格中的______,______;
②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
2、△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△A1B1C1关于x轴对称的△A2B2C2.
(3)求△AA1A2的面积
3、如图,是单位为1的方格.
(1)在方格中建立直角坐标系,满足A,B两点的坐标分别是(0,2),(0,﹣2),并描出点C(2,﹣2),D(3,0),E(2,2),连接AB,BC,CD,DE,EA.
(2)作出(1)中五边形ABCDE关于y轴的对称图形.
(3)求(1)中所作的五边形ABCDE的周长和面积.
4、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.
(1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;
(2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;
①当时,用含的式子表示;
②当时,的值为__________;
③当时,直接写出的取值范围.
5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
-参考答案-
一、单选题
1、D
【解析】
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
2、B
【解析】
【分析】
根据已知点坐标确定直角坐标系,即可得到答案.
【详解】
由题意可建立如图所示平面直角坐标系,
则复兴门站的坐标为.
故选:.
【点睛】
此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.
3、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
4、D
【解析】
【分析】
利用全等三角形的性质证明即可.
【详解】
解:∵A(-1,0),B(0,2),
∴OA=1,OB=2,
∵△AOB≌△CDA,
∴OB=AD=2,
∴OD=AD+AO=2+1=3,
故选D.
【点睛】
本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.
5、D
【解析】
【分析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.
【详解】
∵将点A(﹣3,﹣2)向右平移5个单位长度,
∴平移后的点的横坐标为-3+5=2,
∴平移后的点的坐标为(2,-2),
故选:D.
【点睛】
此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.
6、B
【解析】
【分析】
根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.
【详解】
解:∵用表示5排7座
∴坐标的第一个数表示排,第二个数表示座
∴小嘉坐在7排8座可表示出(7,8).
故选B.
【点睛】
本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.
7、D
【解析】
【分析】
在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.
【详解】
解:点关于轴对称的点的坐标是,
故选:D.
【点睛】
本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.
8、A
【解析】
【分析】
根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.
【详解】
解:∵点在第四象限内,
∴,
解得,;
故选:A.
【点睛】
本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.
9、C
【解析】
【分析】
根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.
【详解】
解:∵点在第三象限内,
∴
m的值可以是
故选C
【点睛】
本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标0;③第三象限的点:横坐标
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试精练,共24页。试卷主要包含了已知点P,在平面直角坐标系xOy中,点M,已知点P的坐标为等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共26页。