搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系必考点解析试卷(含答案解析)

    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系必考点解析试卷(含答案解析)第1页
    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系必考点解析试卷(含答案解析)第2页
    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系必考点解析试卷(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十九章 平面直角坐标系综合与测试当堂检测题

    展开

    这是一份2021学年第十九章 平面直角坐标系综合与测试当堂检测题,共25页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系中,已知点P,点A的坐标为,则点A在,已知点A等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.2、下列命题中,是真命题的有(       ①以1、为边的三角形是直角三角形,则1、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤3、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为(       ).A.1 B. C.7 D.4、下列命题中为真命题的是(  )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣15、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为(       A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)6、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、点A的坐标为,则点A在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限8、已知点Ax,5)在第二象限,则点B(﹣x,﹣5)在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限9、平面直角坐标系中,点y轴的距离是(       A.1 B.2 C.3 D.410、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.2、在平面直角坐标系中,等腰直角和等腰直角的位置如图所示,顶点轴上,.若点的坐标为,则线段的长为__________.3、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.4、在平面直角坐标系中,如果点y轴上,那么点M的坐标是______.5、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么AB两点的距离等于______.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A (-1,3), B (-4,3) ,O (0,0).(1)△ABO向右平移5个单位,向上平移1个单位,得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)画出△A1B1C1沿着x轴翻折后得到的△A2B2C2,并写出点A2的坐标.2、如图,在平面直角坐标系中,的三个顶点的坐标分别为.将向下平移3个单位,再向右平移4个单位得到(1)画出平移后的(2)写出的坐标;(3)直接写出的面积.3、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).4、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点分别在轴、轴上,设点轴上异于点的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设                          (1)直接写出的范围;(2)若点轴上的动点,结合图形,求(用含的式子表示);(3)当点轴上的动点时,求的周长的最小值,并说明此时点的位置.5、在平面直角坐标系中,对于点,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,点关于点的对称平移点为(1)已知点①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以为顶点的三角形围成的面积为1,求的值. -参考答案-一、单选题1、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.2、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、为边的三角形是直角三角形,但1、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.3、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出ab的值,进而得出答案.【详解】解:∵点Pa,3)和点Q(4,b)关于x轴对称,a=4,b=-3,a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出ab的值是解题关键.4、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点Fb,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.5、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点Pxy)关于x轴的对称点P′的坐标是(x,-y).6、D【解析】【分析】x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.7、A【解析】【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点Ax,5)在第二象限,x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵∴点轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.10、B【解析】【分析】内任一点Aab)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-ab),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点Aab)在第三象限内,a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点Ba,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.二、填空题1、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点M(3,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1.故答案为:y=1.【点睛】此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.2、【解析】【分析】如图,过点作一条垂直于轴的直线,过点交点为,过点交点为;有题意可知,由D点坐标可知的长度,,进而可得结果.【详解】解:如图, 过点作一条垂直于轴的直线,过点交点为,过点交点为中, D点坐标可知故答案为:【点睛】本题考查了全等三角形的判定与性质,坐标系中点的坐标等知识.解题的关键是找出所求线段的等价线段的值.3、(【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵228=26,A22A6的位置在第三象限,且在经过点A2M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A2M的解析式为y=x+3,A22点在直线y=x+3上,第二个等腰直角三角形的边长为…,n个等腰直角三角形的边长为(n-1∴第22个等腰直角三角形的边长为(21,可得A22M=(21A21 A1=+1,A22 的横坐标为:A22 的纵坐标为:A22),故答案为:().【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4、【解析】【分析】根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.【详解】解:y轴上,解得M的坐标为故答案为:【点睛】本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.5、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,故答案为:【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,斜边长为,那么三、解答题1、 (1)见解析,(2)见解析,【解析】【分析】(1)把△ABO的三个顶点ABO分别向平移5个单位,向上平移1个单位,得到对应点A1B1C1,依次连接这三个点即可得到△A1B1C1,即可写出点B1的坐标;(2)把△A1B1C1的三个顶点A1B1C1沿着x轴翻折后得到A2B2C2依次连接这三点,得到△A2B2C2,由翻折即可写出点A2的坐标.(1)如图所示,(2)如图所示,.【点睛】本题考查了平面直角坐标系中图形的平移与翻折,关键是确定三角形三个顶点平移与翻折后点的坐标.2、 (1)见解析(2)(3,-3)、(2,0)、(1,-2);(3)2.5【解析】【分析】(1)根据平移的性质分别得到点,再顺次连线即可得到(2)由点在坐标系中位置直接得到坐标即可;(3)利用面积和差关系计算即可.(1)解:如图,即为所求;(2)解:由图可得(3,-3)、(2,0)、(1,-2);(3)解:的面积==2.5.【点睛】此题考查了在网格中平移作图,确定点的坐标,计算网格中图形的面积,正确掌握平移的性质正确作图是解题的关键.3、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点AB关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.4、 (1)(2)(3)只有当点轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出的度数即可;(3)当点在点之间时,过点轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,BNOC的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,所以,的范围是(2)解:当点在点之间时,此时BCOA∵∠MBN=45°,互余,当点在点的左边时,此时同理可得,当点在点的右边且在(8,0)左侧时,据题意,同理可得,(3)解:当点在点之间时,如图①,过点轴于点,又,而的周长为当点在点的左边时,如图②,必有,故当点在点的右边时,如图③,则,而综上所述,只有当点轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.5、 (1)①(6,4);②(3,-2)(2)的值为【解析】【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为故答案为:②若点为点关于点的对称平移点,则点的坐标为故答案为:(2)解:如图2中,当时,四边形是梯形,(舍弃),时,同法可得综上所述,的值为【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试习题,共28页。试卷主要包含了在平面直角坐标系中,点P,已知点P的坐标为等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共27页。试卷主要包含了点关于轴的对称点是,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共25页。试卷主要包含了在平面直角坐标系中,已知点P,在平面直角坐标系中,点P等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map