![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系章节测试试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12766073/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系章节测试试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12766073/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系章节测试试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12766073/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学冀教版第十九章 平面直角坐标系综合与测试课时训练
展开
这是一份数学冀教版第十九章 平面直角坐标系综合与测试课时训练,共25页。试卷主要包含了如图是象棋棋盘的一部分,如果用,下列命题中为真命题的是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、如图,树叶盖住的点的坐标可能是( )A. B. C. D.4、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)5、在平面直角坐标系中,将点先向左平移个单位得点,再将向上平移个单位得点,若点落在第三象限,则的取值范围是( )A. B. C. D.或6、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵7、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣18、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°9、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.10、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为 _____.2、已知点M坐标为,点M到x轴距离为______.3、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.4、如图,在平面直角在坐标系中,四边形OACB的两边OA,OB分别在x轴、y轴的正半轴上,其中,且CO平分,若,,则点C的坐标为______.5、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.三、解答题(5小题,每小题10分,共计50分)1、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.2、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.3、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积.4、已知三顶点在如图所示的平面直角坐标系中的网格点位置.(1)写出,,三点的坐标;(2)若各顶点的纵坐标都不变,横坐标都乘以,在同一坐标系中描出对应的点,,,并依次连接这三个点得;(3)求的面积.5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标. -参考答案-一、单选题1、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.2、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.3、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.4、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.5、A【解析】【分析】根据点的平移规律可得,再根据第三象限内点的坐标符号可得.【详解】解:点先向左平移个单位得点,再将向上平移个单位得点,点位于第三象限,,解得:,故选:.【点睛】此题主要考查了坐标与图形变化平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.6、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.7、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.8、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.9、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.10、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.二、填空题1、 (6,0)或(2,0)【解析】【分析】根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.【详解】根据点Q(-5,4)是点P(x,y)的级派生点,∴,解得:,∴P点坐标为(4,0).设点A坐标为(t,0),∵,∴,解得:或∴A点坐标为(6,0)或(2,0).故答案为(6,0)或(2,0).【点睛】本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.2、7【解析】【分析】根据点(x,y)到x轴的距离等于|y|求解即可.【详解】解:点M 到x轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.3、(,)【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵228=26,∴A22与A6的位置在第三象限,且在经过点A2、M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,把M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A2M的解析式为y=x+3,即A22点在直线y=x+3上,第二个等腰直角三角形的边长为,…,第n个等腰直角三角形的边长为()n-1,∴第22个等腰直角三角形的边长为()21,可得A22M=()21,∴A21 A1=+1,∴A22 的横坐标为:,A22 的纵坐标为:,∴A22(,),故答案为:(,).【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4、【解析】【分析】取AB的中点E,连接OE,CE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=,AO=BO=5;过点O作OG⊥OC交CA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点C作CH⊥x轴,垂足为H,设C(m,n),则OH=m,CH=n,AH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OE,CE并延长交x轴于点F,如图,∵,OC平分∠ACB,∴ ∵均为直角三角形,∴ ∴∴ ∴ ∵ ∴∴ ∴ ∴是等腰直角三角形,∴ ∵ 由勾股定理得, ∴ ∴ 过点O作OE⊥OC交CA的延长线于点G,∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,∴OC=OG,∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG,∵∠OCB=∠OEA=45°,∴△COB≌△GOA(ASA),∴BC=AG=,∵CG=AC+AG=∵△OCE为等腰直角三角形,∴OC=7过点C作CH⊥x轴于点H,设C(m,n),∴OH=m,CH=n,AH=5-m在Rt△CHO和Rt△CHA中,由勾股定理得,解得,,(负值舍去)∴C()故答案为:()【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.5、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.三、解答题1、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【解析】【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;∵P是D(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.2、(1)见解析;(2).【解析】【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.3、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.4、 (1),,;(2)见解析;(3)的面积为3.5.【解析】【分析】(1)根据点在坐标系中的位置可直接读出点的坐标;(2)纵坐标都不变,横坐标都乘以−1,得,,,然后依次连接即可得;(3)在方格点中利用正方形的面积减去三个三角形的面积即可得.(1)解:根据点在坐标系中的位置可得:,,;(2)解:纵坐标都不变,横坐标都乘以−1,可得:,,,然后依次连接,即为所求;(3)解:的面积为:,∴的面积为.【点睛】题目主要考查坐标与图形变换,点的变换等,理解题意,熟练掌握点的变换是解题关键.5、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【解析】【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)∵关于轴对称的,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),∴中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共23页。试卷主要包含了下列命题中,是真命题的有,12,则第三边长为13;等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共24页。试卷主要包含了在平面直角坐标系xOy中,点A,如图,,且点A,点在第四象限,则点在第几象限,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时练习,共26页。试卷主要包含了点A关于轴的对称点的坐标是,点关于轴对称的点是,在平面直角坐标系中,点P等内容,欢迎下载使用。