搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系定向训练试卷(无超纲带解析)

    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系定向训练试卷(无超纲带解析)第1页
    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系定向训练试卷(无超纲带解析)第2页
    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系定向训练试卷(无超纲带解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题

    展开

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共27页。试卷主要包含了在平面直角坐标系中,将点A,下列命题中为真命题的是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为(       A. B. C. D.2、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)3、若点Pm1)在第二象限内,则点Q1m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限4、若点在第三象限,则点在(       ).A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(       A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)6、下列命题中为真命题的是(  )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣17、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是(       A. B. C. D.8、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.9、在平面直角坐标系坐标中,第二象限内的点Ax轴的距离是3,到y轴的距离是2,则A点坐标为(  )A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)10、点关于轴对称点的坐标为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.2、在平面直角坐标系中,如果点y轴上,那么点M的坐标是______.3、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.4、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.5、如图,在平面直角坐标系xOy中,点A(-3,0),B(-1,2).以原点O为旋转中心,将△AOB顺时针旋转90°,再沿y轴向下平移两个单位,得到△AOB′,其中点A′与点A对应,点B′与点B对应.则点B′的坐标为__________ .三、解答题(5小题,每小题10分,共计50分)1、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出ABC关于y轴对称的ABC′.(3)求ABC的面积        2、如图1,在平面直角坐标系中,直线ABx轴、y轴分别交于点AB,点P在直线AB上,点AP的坐标分别为,且ab是二元一次方程组的解.(1)求出AP的坐标;(2)求OB的长;(3)如图2,点C在第一象限,,且,动点M从点C出发,以每秒2个单位长度的速度向点B匀速运动,到达点B(无停留,速度保持不变)再沿射线BO匀速运动,动点N从点A出发,以每秒5个单位长度的速度沿射线AB方向匀速运动,点MN同时出发,当的面积等于的面积的2倍时,求的面积.3、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出ABC关于y轴的对称图形(2)写出点的坐标;(3)若坐标轴上存在一点E,使EBC是以BC边为底边的等腰三角形,直接写出点E的坐标.(4)在y轴上找一点P,使PAPC的长最短.4、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为SABC沿直线l折叠,重合部分的图形为,将的面积记为,则称ABC关于直线l的对称度.在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m,0)作垂直于x轴的直线①当时,ABC关于直线的对称度的值是          ②若ABC关于直线的对称度为1,则m的值是          (2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.5、如图,在正方形网格中,每个小正方形的边长为1个单位长度,三点在格点上(网格线的交点叫做格点),现将先向上平移4个单位长度,再关于轴对称得到(1)在图中画出,点的坐标是______;(2)连接,线段的长度为______;(3)若内部一点,经过上述变换后,则内对应点的坐标为______. -参考答案-一、单选题1、A【解析】【分析】根据等腰直角三角形的性质得到OA1OA2OA3,…,OA1033,再利用A1A2A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033x轴负半轴,即可确定点A1033的坐标.【详解】解:∵等腰直角三角形OA1A2的直角边OA1x轴的负半轴上,且OA1A1A2,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,OA1OA2OA3,……,OA1033A1A2A3、…,每8个一循环,再回到x轴的负半轴,10338×129+1∴点A1033x轴负半轴,OA1033∴点A1033的坐标为:故选:A【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.2、A【解析】【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.3、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm1)在第二象限内,m01m0则点Q1m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点Pmn)在第三象限,m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.6、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点Fb,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.7、C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解【详解】解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,A的坐标是故选:C【点睛】本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.8、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.9、B【解析】【分析】根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:第二象限的点轴的距离是3,到轴的距离是2,的横坐标是,纵坐标是3,的坐标为故选:B.【点睛】本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.10、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.二、填空题1、     平面直角坐标系     横轴          纵轴          原点     O【解析】2、【解析】【分析】根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.【详解】解:y轴上,解得M的坐标为故答案为:【点睛】本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.3、【解析】【分析】的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.4、【解析】【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.【详解】解:A(a,-3)与点B(3,b)关于y轴对称, 故答案为:【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.5、【解析】【分析】根据题意画出相应的图形即可解答.【详解】解:根据题意画出图形,如图所示:由图知,以原点O为旋转中心,将△AOB顺时针旋转90°,点B对应的坐标为(2,1),再沿y轴向下平移两个单位,对应的点B′坐标为(2,-1),故答案为:(2,-1).【点睛】本题考查坐标与图形变换-旋转、坐标与图形变换-平移,正确画出变换后的图形是解答的关键.三、解答题1、 (1)见解析;(2)见解析;(3)4.【解析】【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△ABC′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.2、 (1)A(8,0),P(-4, 9)(2)6;(3)24或60【解析】【分析】(1)解方程组可求a b的值,即可求解;(2)由面积关系可求解;(3)分两种情况讨论,由面积法可求OE的长,由面积关系可求解.(1)解: 解这个方程组得: ∴2a=2×4=8,-a=-4,3b=3×3=9,A(8,0),P(-4, 9);(2)如图1,过点PPHx轴于H,连接BHA(8,0),P(-4, 9),OA=8,ОН=4,PH=9,∴SAPH = SABH + SPHB   OB=6;(3)设运动时间为tsBC=BC= 4,当0≤ t ≤2吋,如图2,过点OOEABE∴SAOB= ∴SAON = ∴SABM= ∵△ AON的面积等于△ABM的面积的2倍,∴12t=2 (12-6t),t= 1,∴SPON = SAOP-SAON =当t > 2时,如图3,∴SABM= ∵△ AON的面积等于△ABM的面积的2倍,∴12t=2×(8t- 16),t= 8,∴SPON = SAON-SAOP =综上所述:△PON的面积为24或60.【点睛】本题考查了平面直角坐标系,三角形综合题,二元一次方程组的应用,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.3、 (1)作图见解析(2)(3)(4)作图见解析【解析】【分析】(1)分别确定关于轴的对称点 再顺次连接即可;(2)根据图1的位置可得其坐标;(3)根据网格图的特点画的垂直平分线,则垂直平分线与坐标轴的交点符合要求;(4)由(1)得:关于轴对称,所以连接轴于 可得是符合要求的点.(1)解:如图1,是所求作的三角形,(2)解:由图1可得:(3)解:如图1,为等腰三角形,且为底边,根据网格图的特点画的垂直平分线交坐标轴于 (4)解:如图2,由(1)得:关于轴对称,所以连接轴于 此时最短,所以即为所求作的点.【点睛】本题考查的是轴对称的作图,线段垂直平分线的性质,等腰三角形的定义,利用轴对称的性质确定线段和的最小值,熟练的应用轴对称的性质是解本题的关键.4、(1)①;②0;(2);(3)4或1【解析】【分析】(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分,同时需要满足t的值为整数.【详解】解:(1)①当时,根据题意作图如下:为等腰直角三角形,根据折叠的性质,关于直线的对称度的值是:故答案是:②如图:根据等腰三角形的性质,当时,有,ABC关于直线的对称度为1,故答案是:0;(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,则需要使得最大,如下图:时,取到最大,根据,可得的中位线,ABC关于直线的对称度的最大值为:(3)若存在直线,使得APQ关于该直线的对称度为1,为等腰三角形即可,①当时,为等腰三角形,如下图:②当时,为等腰三角形,如下图:③当时,为等腰三角形,如下图:,则根据勾股定理:解得:(不是整数,舍去),综上:满足题意的整数的值为:4或1.【点睛】本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.5、(1)画图见解析,;(2);(3)【解析】【分析】(1)分别确定平移与轴对称后的对应点 再顺次连接 再根据的位置可得其坐标;(2)利用勾股定理求解的长度即可;(3)根据平移的性质与轴对称的性质依次写出每次变换后的坐标即可.【详解】解:(1)如图,是所求作的三角形,其中 (2)由勾股定理可得: 故答案为: (3)由平移的性质可得:向上平移4个单位长度后的坐标为: 再把点沿轴对折可得: 故答案为:【点睛】本题考查的是画平移与轴对称后的图形,平移的性质,轴对称的性质,坐标与图形,二次根式的化简,掌握“平移与轴对称的作图及平移与轴对称变换的坐标变化规律”是解本题的关键. 

    相关试卷

    数学第十九章 平面直角坐标系综合与测试练习:

    这是一份数学第十九章 平面直角坐标系综合与测试练习,共24页。试卷主要包含了如果点P,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共24页。试卷主要包含了在平面直角坐标系中,将点A,在平面直角坐标系xOy中,点M,如果点P等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map