搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系同步测试试卷(精选含详解)

    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系同步测试试卷(精选含详解)第1页
    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系同步测试试卷(精选含详解)第2页
    2021-2022学年基础强化冀教版八年级数学下册第十九章平面直角坐标系同步测试试卷(精选含详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十九章 平面直角坐标系综合与测试复习练习题

    展开

    这是一份初中第十九章 平面直角坐标系综合与测试复习练习题,共23页。试卷主要包含了点在第四象限,则点在第几象限,点P关于y轴对称点的坐标是.,若点P等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在一次“寻宝”游戏中,寻宝人已经找到两个标志点,并且知道藏宝地点的坐标是,则藏宝处应为图中的(       A.点 B.点 C.点 D.点2、点关于轴的对称点是(       A. B. C. D.3、已知点Am,2)与点B(1,n)关于y轴对称,那么m+n的值等于(  )A.﹣1 B.1 C.﹣2 D.24、点在第四象限,则点在第几象限(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,点关于轴对称的点的坐标是(       A. B. C. D.6、在平面直角坐标系中,所在的象限是(       A.第一象限 B.第二象限 C.第三象限 D.第四象限7、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)8、点P在第二象限内,点Px轴的距离是6,到y轴的距离是2,那么点P的坐标为(  )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)9、若点Pm1)在第二象限内,则点Q1m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限10、在平面直角坐标系中,点P(-2,3)在(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.2、已知点A(m-1,3)与点B(2,n+1)关于y轴对称,则mn=_______.3、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数ab组成的数对,叫做有序数对,记作(     ),___ ). 注意:①数ab是有顺序的;②数ab是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.4、在平面直角坐标系中,一个长方形ABCD三个顶点的坐标分别为A(1,2),B(1,﹣4),D(﹣3,2),则点C坐标为 _____.5、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,的三个顶点都在边长为1的正方形网格的格点上,其中点B的坐标为,点C的坐标为(1)在网格中画出关于y轴对称的图形,并直接写出点的坐标;(2)求线段的长.2、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为(1)若关于y轴对称,画出(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.3、在平面直角坐标系中,已知点,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;(2)若点Py轴上的动点,连接PD①如图(1),当点Py轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标.4、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形(4)在x轴上找到一点P,使最小,则的最小值是_________.5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C(2)△ABC的面积是        (3)在y轴上有一点D,且SACDSABC,则点D的坐标为         -参考答案-一、单选题1、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.2、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.3、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出mn的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.4、C【解析】【分析】根据点Axy)在第四象限,判断xy的范围,即可求出B点所在象限.【详解】∵点Axy)在第四象限,x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣xy﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【解析】【分析】在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.【详解】解:点关于轴对称的点的坐标是故选:D.【点睛】本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.6、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、A【解析】【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.8、C【解析】【分析】根据点(xy)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(xy),∵点Px轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.9、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm1)在第二象限内,m01m0则点Q1m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.二、填空题1、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.2、1【解析】【分析】根据关于y轴对称的点,纵坐标不变,横坐标互为相反数,列出方程求解即可.【详解】解:∵点A(m-1,3)与点B(2,n+1)关于y轴对称,m-1=-2,n+1=3,解得,m=-1,n=2,mn=-1+2=1,故答案为:1.【点睛】本题考查了关于y轴对称点的坐标变化,解题关键是明确关于y轴对称的点,纵坐标不变,横坐标互为相反数.3、     位置     有顺序     a     b     一一对应【解析】4、(﹣3,﹣4【解析】【分析】根据长方形的性质求出点C的横坐标与纵坐标,即可得解.【详解】如图,A12),B1,﹣4),D(﹣32),∴点C的横坐标与点D的横坐标相同,为﹣3C的纵坐标与点B的纵坐标相同,为﹣4∴点D的坐标为(﹣3,﹣4).故答案为:(﹣3,﹣4).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对边平行且相等的性质,作出图形更形象直观.5、1【解析】【分析】先求出点A向上平移两个单位后的坐标为x轴上点坐标的特征即可求出m的值.【详解】∴将点A向上平移两个单位后的坐标为x轴上,解得:故答案为:1.【点睛】本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.三、解答题1、 (1)画图见解析,(2)【解析】【分析】(1)分别确定关于轴对称的,再顺次连接,再根据位置可得的坐标即可;(2)由勾股定理进行计算即可得到答案.(1)解:如图,是所求作的三角形, (2)解:由勾股定理可得:【点睛】本题考查的是轴对称的作图,坐标与图形,勾股定理的应用,掌握“轴对称作图的基本步骤与勾股定理的应用”是解本题的关键.2、 (1)见解析(2)【解析】【分析】(1)根据关于y轴对称的点的坐标特征,先得到ABC关于y轴对称的对应点的坐标,然后在坐标系中描出三点,最后顺次连接三点即可得到答案;(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.(1)解:如图所示,即为所求;(2)解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,由图可知点P的坐标为(3,3).【点睛】本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.3、 (1)          (2)①SPECSECD,理由见解析;②点P坐标为(0,5)或(0,).【解析】【分析】(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;(2)①先求出PF=2,再用三角形的面积公式得出SPECCESECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.(1)解:AB向下平移5个单位得线段CD 线段AB平移到CD扫过的面积为: 故答案为:(2)①如图1,过P点作PFACF由平移知,轴,A(2,4),PF=2,由平移知,CDAB=4,SPECCEPFCE×2=CESECDCECDCE×4=2CESECD=2SPEC即:SPECSECD②(ⅰ)如图2,当PD交线段ACE,且PD将四边形ACDB分成面积为2:3两部分时,连接PC,延长DCy轴于点M,则M(0,﹣1),OM=1,连接AC,则SACDS方形ABDC=10,PD将四边形ACDB的面积分成2:3两部分,SCDES矩形ABDC×20=8,由①知,SPECSECD×8=4,SPCDSPEC+SECD=4+8=12,SPCDCDPM×4PM=12,PM=6,POPMOM=6﹣1=5,P(0,5).(ⅱ)如图3,当PDAB于点FPD将四边形ACDB分成面积为2:3两部分时,连接PB,延长BAy轴于点G,则G(0,4),OG=4,连接AC,则SABDS方形ABDC=10,PD将四边形ACDB的面积分成2:3两部分,SBDES矩形ABDC×20=8,SBDEBDBE×5BE=8,BEP点作PHBDDB的延长线于点HB(6,4),PH=6SPDBBD×PH×5×6=15,SPBESPDBSBDE=15﹣8=7,SPBEBEPGPG=7,PGPOPG+OG+4=P(0,),即:点P坐标为(0,5)或(0,).【点睛】此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.4、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据AB两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,ABC即为所求,SABC==【小题3】如图,A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=AP+PB= AB==【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).【解析】【分析】(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.(2)得出△ABC的底和高再由三角形面积公式计算即可.(3)SACDSABC为同底不同高,故由(2)问知,再由点Dy轴上知D点坐标为(0,4)或(0,-4).【详解】解:(1)如图所示,点A为(-4,0),∵点C与点A关于y轴对称∴点C坐标为(4,0)(2)由×底×高有(3)∵SACDSABCAC=ACD点的纵坐标为4或-4又∵D点在y轴上D点坐标为(0,4)或(0,-4).【点睛】本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了若点P等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共28页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共30页。试卷主要包含了已知点和点关于轴对称,则的值为,下列说法错误的是,已知点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map