搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系专项测试试题(无超纲)

    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系专项测试试题(无超纲)第1页
    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系专项测试试题(无超纲)第2页
    2021-2022学年度冀教版八年级数学下册第十九章平面直角坐标系专项测试试题(无超纲)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十九章 平面直角坐标系综合与测试测试题

    展开

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试测试题,共24页。试卷主要包含了在平面直角坐标系中,将点A,点关于轴的对称点是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是(  )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)2、在平面直角坐标系中,点P(-2,3)在(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为(       ).A.1 B. C.7 D.4、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(       A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)5、平面直角坐标系中,下列在第二象限的点是(       A. B. C. D.6、点关于轴的对称点是(       A. B. C. D.7、点与点Q关于y轴对称,则点Q的坐标为(       A. B. C. D.8、在平面直角坐标系中,点A的坐标为(﹣4,3),若ABx轴,且AB=5,当点B在第二象限时,点B的坐标是(  )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)9、点在第(     )象限.A.一 B.二 C.三 D.四10、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是(  )A.相 B.马 C.炮 D.兵第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、要在街道旁修建一个奶站,向居民区AB提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从AB两点到奶站距离之和的最小值是____.2、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.3、在平面直角坐标系中,点A坐标为,点Bx轴上,若是直角三角形,则OB的长为______.4、用坐标表示地理位置的步骤:(1)建立坐标系,选择一个______参照点为原点,确定______和______.参照点不同,地理位置的坐标也不同.(2)根据具体问题确定适当的______,并在坐标轴上标出______.(3)在坐标平面内画出这些点,并写出各点的______和各个地点的名称.5、已知点在一、三象限的角平分线上,则的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点三点的坐标;(2)在轴、轴上找到与点距离相等的点(要求:尺规作图,不写画法,保留作图痕迹).2、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C23、在平面直角坐标系xOy中,将点x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”(1)点的“相对轴距”______;(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;(3)已知点,点MN内部(含边界)的任意两点.①直接写出点M与点N的“相对轴距”之比的取值范围;②将向左平移个单位得到,点与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.4、如图,平面直角坐标系中有点A(-1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角ABC,设点C的坐标为(cd).(1)当a=2时,则C点的坐标为     (2)动点B在运动的过程中,试判断cd的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.5、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是       (2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EFDC是否关于某直线对称?若是,则对称轴是        E点坐标是        (3)△ABP是以AB为直角边的格点等腰直角三角形(ABP三点都是小正方形的顶点),则点P坐标是                -参考答案-一、单选题1、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A,则点关于轴的对称点坐标是故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.2、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.3、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出ab的值,进而得出答案.【详解】解:∵点Pa,3)和点Q(4,b)关于x轴对称,a=4,b=-3,a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出ab的值是解题关键.4、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.5、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.7、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.8、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:轴,,点B在第二象限,B一定在点A的左侧,且两个点纵坐标相同,,即故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.9、D【解析】【分析】第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.【详解】解:点在第四象限.故选:D【点睛】本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.10、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.二、填空题1、10【解析】【分析】A点关于x轴的对称点A',连接A'Bx轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'Bx轴交于点P,连接APAPA'PAP+BPA'P+BPA'B,此时P点到AB的距离最小,A(0,3),A'(0,﹣3),B(6,5),5-(-3)=8,6-0=6A'B=10,P点到AB的距离最小值为10,故答案为:10.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离是解题的关键.2、【解析】【分析】根据已知点的坐标表示方法即可求即.【详解】解:∵从前面数第8行第3位的学生位置记作∴坐在第3行第8位的学生位置可表示为(3,8).故答案为(3,8).【点睛】本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.3、4或【解析】【分析】Bx轴上,所以 ,分别讨论,两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.【详解】解:∵Bx轴上,∴设①当时,B点横坐标与A点横坐标相同,②当时,∵点A坐标为解得:故答案为:4或【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.4、     适当的     x轴,y     正方向     比例尺     单位长度     坐标【解析】5、1【解析】【分析】直接利用一、三象限的角平分线上点横纵坐标相等进而得出答案.【详解】解:∵点Pa,2a−1)在一、三象限的角平分线上,a=2a−1,解得:a=1.故选:C【点睛】此题主要考查了点的坐标,正确掌握一、三象限的角平分线上点的坐标关系是解题关键.三、解答题1、(1)图见解析,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:(2)作BC的垂直平分线与轴、轴的交点即为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.2、1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);2)如图所示,△A1B1C1即为所求.3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.3、 (1)2;(2)见详解;(3)①;②【解析】【分析】(1)根据题意正确写出答案即可;(2)根据题意画出图形即可;(3)①正确画出图形,根据题意分别求出的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.(1)解:x轴和y轴的距离的较大值定义为点M的“相对轴距”,点 2;(2)解:的“相对轴距”是2,与点的“相对轴距”相等的点的横纵坐标的最大值为2,依题意得到的图形是正方形,如图,(3)解:①如图,当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”,取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合, 的最小值为1,的最大值为3时,的最小值为取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,的最大值为3,的最小值为1时,的最大值3,              与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,依题意,点的坐标为在两点(1,1),(-1,1)确定的线段上,【点睛】本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.4、 (1)(-2,3)(2)不变,1【解析】【分析】(1)过点CCEy轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=2,AE=BO=1,即可得出点C的坐标;(2)过点CCEy轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=aAE=BO=1,从而OE=a=1,即可得出点C的坐标为(-aa+1),据此可得c+d的值不变.(1)解:如图1中,过点CCEy轴于E,则∠CEB=∠BOA∵△ABC是等腰直角三角形,BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△ABO中,∴△BCE≌△ABO(AAS),A(-1,0),B(0,2),AO=BE=1,OB=EC=2,OE=1+2=3,C(-2,3),故答案为:(-2,3); (2)解:动点A在运动的过程中,cd的值不变. 如图2,过点CCEy轴于E,则∠CEB=∠BOA∵△ABC是等腰直角三角形,BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△ABO中,∴△BCE≌△ABO(AAS),A(-1,0),B(0,a),BE=AO=1,CE=BO=aOE=1+aC(-a,1+a),又∵点C的坐标为(cd),cd=-a+1+a=1,即cd的值不变.   【点睛】本题主要考查了全等三角形的性质和判定,余角的性质,坐标与图形,以及等腰直角三角形性质等知识,解决问题的关键是作辅助线构造全等三角形.5、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共23页。试卷主要包含了下列命题为真命题的是,下列各点中,在第二象限的点是,已知点P的坐标为,在平面直角坐标系中,A,点A的坐标为,则点A在等内容,欢迎下载使用。

    初中第十九章 平面直角坐标系综合与测试一课一练:

    这是一份初中第十九章 平面直角坐标系综合与测试一课一练,共24页。试卷主要包含了已知点和点关于轴对称,则的值为等内容,欢迎下载使用。

    初中冀教版第十九章 平面直角坐标系综合与测试课后复习题:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试课后复习题,共24页。试卷主要包含了在平面直角坐标系中,A,已知点A,在下列说法中,能确定位置的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map