![2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系定向训练试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12766122/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系定向训练试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12766122/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系定向训练试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12766122/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试,共25页。试卷主要包含了如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)2、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限3、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )A. B. C. D.4、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵5、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.6、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )A. B. C. D.8、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.9、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )A. B. C. D.10、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在平面直角坐标系中,点A(2,﹣2)、点B(﹣3,4)、点C(﹣5,0),那么△ABC的面积等于 ___.2、已知点是第二象限的点,则的取值范围是______.3、如果点在第四象限,那么点在第______象限.4、如果点B与点C的横坐标相同,纵坐标不同,那么直线与y轴的关系为__________.5、点P(5,﹣4)到x轴的距离是___.三、解答题(5小题,每小题10分,共计50分)1、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 2、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).3、如图,若三角形是由三角形平移后得到的,且三角形中任意一点经过平移后的对应点为,,,.(1)画出三角形;(2)写出点的坐标 ;(3)直接写出三角形的面积 ;(4)点在轴上,若三角形的面积为6,直接写出点的坐标 .4、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点A、B、C的对应点分别为D、E、F.(1)在图中画出△DEF,并直接写出点E的坐标;(2)判断线段AC与DF的关系为 ;(3)连接BD、CD,并直接写出△BCD的面积.5、如图,在平面直角坐标系xOy中有一个,其中点.(1)若与关于x轴对称,直接写出三个顶点的坐标;(2)作关于直线m的对称图形,并写出和的坐标. -参考答案-一、单选题1、D【解析】【分析】根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点A到y轴的距离是3,∴点A横坐标为-3,过点A作AE⊥OD,垂足为E,∵∠DAO=∠CAO,AC⊥OB,AC=2,∴AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D.【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.2、A【解析】略3、A【解析】【分析】根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.【详解】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=,……,OA1033=,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1033=8×129+1,∴点A1033在x轴负半轴,∵OA1033=,∴点A1033的坐标为:,故选:A.【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.4、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.5、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.6、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.7、C【解析】【分析】到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.【详解】解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,∴到△ABC三个顶点距离相等的点的坐标为(0,0),故选:C.【点睛】本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.8、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.9、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.10、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.二、填空题1、16【解析】【分析】过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,则,根据题中坐标即可求解.【详解】如图所示,过B、A点分别作y轴的垂线,过A、C点作x轴的垂线,四条垂线分别相交于D、E、F、A点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,故答案为:16.【点睛】对于坐标系中不规则三角形的面积计算,我们通常将其补成矩形,再减去三个规则的直角三角形.将复杂的不规则图形面积求解转化成简单的规则图形求解.2、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.3、一【解析】【分析】先判断,再判断,结合象限内点的坐标规律可得答案.【详解】解:点在第四象限,,,在第一象限.故答案为:一.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.4、平行或重合##重合或平行【解析】【分析】根据点的坐标规律解答,此题根据图形即可求得.【详解】解:点B与点C的横坐标相同,则直线BC//y轴,当点B与点C在y轴上时,则直线BC与y轴重合.故答案为:平行或重合.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.5、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】点P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.三、解答题1、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.2、 (1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵ ,,∴ ,,.∵ ,∴ .在中,由,得.解得.∴ ,.∵ 是由旋转得到的,∴ ,.∴ .∴ .∴ .在中,.∴ 点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴ .∴ .∵ 是由旋转得到的,∴ .在中,由,得.∴ 点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.3、 (1)见解析(2)(3)2.5(4)或【解析】【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点A1的位置写出坐标即可.(3)利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.(4)设M(m,0),构建方程求出m即可.(1)如图,画出三角形即为所求.(2)点的坐标.故答案为:;(3)直接写出三角形的面积,故答案为:2.5.(4)设,则有,解得,或.故答案为:或.【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.4、 (1)见解析,点E的坐标为(0,1)(2)平行且相等(3)△BCD的面积为14【解析】【分析】(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为,再顺次连接,即可求解;(2)根据线段AC与DF是平移前后的对应线段,即可求解;(3)以 为底,则高为4,即可求解.(1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为, 如图所示,△DEF即为所求;(2)线段AC与DF的关系为平行且相等,理由如下:∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,∴线段AC与DF是对应线段,∴线段AC与DF平行且相等;(3)S△BCD=×7×4=14.【点睛】本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.5、(1),,;(2)作图见解析;,.【解析】【分析】(1)根据关于x轴对称横坐标不变,纵坐标互为相反数即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;【详解】解:(1)∵三个顶点坐标分别为:,,,∴三个顶点坐标分别为:,,.(2)如图所示:、的坐标分别为:,.【点睛】本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共26页。试卷主要包含了在下列说法中,能确定位置的是,在平面直角坐标系中,点A,在平面直角坐标系中,点在等内容,欢迎下载使用。
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共27页。试卷主要包含了若点P,点关于轴对称的点是,在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)