![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12766128/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12766128/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系达标测试试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12766128/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共24页。试卷主要包含了在平面直角坐标系中,点在等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、点关于轴对称的点是( )A. B. C. D.3、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是( )A. B. C. D.4、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )A.将沿轴翻折得到B.将沿直线翻折,再向下平移个单位得到C.将向下平移个单位,再沿直线翻折得到D.将向下平移个单位,再沿直线翻折得到5、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点6、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.7、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)8、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.9、在平面直角坐标系中,点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限10、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、,是平面直角坐标系中的两点,线段长度的最小值为 __.2、在平面直角坐标系中,点关于y轴的对称点的坐标为______.3、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.4、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标______;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为______.5、在平面直角坐标系中,点M的坐标是,则点M到x轴的距离是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC 关于 y 轴对称的△A1B1C1.(2)写出 A1,B1,C1 的坐标(直接写出答案),A1 ;B1 ;C1 .(3)△A1B1C1 的面积为 .2、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)4、如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、B、C分别对应A1、B1、C1);(2)△A1B1C1的面积= ;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A1B1C1内部的对应点M1的坐标 ;(4)请在y轴上找出一点P,满足线段AP+B1P的值最小,并写出P点坐标 .5、如图,已知△ABC的三个顶点分别为A(-2,4)、B(-6,0)、C(-1,0).(1)将△ABC沿y轴翻折,画出翻折后图形△A1B1C1,并写出点A1的坐标;(2)在y轴上确定一点P,使AP+PB的值最小,直接写出点P的坐标;(3)若△DBC与△ABC全等,请找出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标. -参考答案-一、单选题1、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是.故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.4、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A、根据图象可得:将沿x轴翻折得到,作图正确;B、作图过程如图所示,作图正确;C、如下图所示为作图过程,作图错误;D、如图所示为作图过程,作图正确;故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.5、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.6、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.7、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.8、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.9、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:,,在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.10、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题1、3【解析】【分析】画出图形,根据垂线段最短解答即可.【详解】解:如图.,在轴上.线段的长度为点到y轴上点的距离.若使得线段长度的最小,由垂线段最短,可知当A在时,即轴,线段长度最小.此时最小值为3.故答案为:3.【点睛】本题考查了坐标与图形,垂线段最短,数形结合是解答本题的关键.2、【解析】【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:点关于y轴对称的点的坐标是.故选:.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.3、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.4、 或##或【解析】【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心.【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5).【点睛】本题考查坐标与图形变化−旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.5、5【解析】【分析】根据到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:∵点M的坐标是,∴点M到x轴的距离是,故答案为:5.【点睛】此题考查了点的坐标,关键是掌握点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.三、解答题1、 (1)见解析(2)(-1,2),(-3,1),(2,-1)(3)4.5【解析】【分析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.(1)△A1B1C1如图所示;(2)根据图形得,A1(-1,2),B1(-3,1),C1(2,-1),故答案为:(-1,2),(-3,1),(2,-1);(3)△A1B1C1的面积=5×3-×1×2-×2×5-×3×3,=15-1-5-4.5,=15-10.5,=4.5.故答案为:4.5【点睛】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.2、见解析【解析】【分析】根据各点的坐标描出各点,然后顺次连接即可【详解】解:如图所示:【点睛】本题考查了坐标与图形,熟练掌握相关知识是解题的关键3、 (1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到.【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.4、 (1)见解析(2)2(3)(x,-y)(4)点P见解析,(0,2)【解析】【分析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)利用割补法进行计算,即可得到△A1B1C1的面积;(3)根据点M和M1关于x轴对称可得结果;(4)直接利用轴对称求最短路线的方法得出答案.【小题1】解:如图所示:△A1B1C1点即为所求;【小题2】△A1B1C1的面积==2;【小题3】由题意可得:M1的坐标为(x,-y);【小题4】如图所示:点P即为所求,点P的坐标为(0,2).【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5、 (1)图见解析,A1(2,4)(2)P(0,3)(3)图见解析,【解析】【分析】(1)先作出点A、B、C关于y轴对称的点,然后连线即可;(2)连接AA1,交y轴于一点,然后根据轴对称的性质及两点之间线段最短可知此点即为所求的点P;(3)根据全等三角形的性质可直接作出图象,然后问题可求解.(1)解:如图所示:由图象可知:A1(2,4);(2)解:如(1)图示:∴由图可知P(0,3);(3)解:由全等三角形的性质可得如图所示:由图可知:符合条件的△DBC(点D与点A重合除外)点.【点睛】本题主要考查全等三角形的性质及坐标与图形,熟练掌握全等三角形的性质及坐标与图形是解题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共21页。试卷主要包含了若点在轴上,则点的坐标为,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共23页。试卷主要包含了在平面直角坐标系中,已知点P,已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共23页。