![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第1页](http://img-preview.51jiaoxi.com/2/3/12766129/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第2页](http://img-preview.51jiaoxi.com/2/3/12766129/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第十九章平面直角坐标系同步训练练习题第3页](http://img-preview.51jiaoxi.com/2/3/12766129/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十九章 平面直角坐标系综合与测试精练
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试精练,共27页。试卷主要包含了在平面直角坐标系xOy中,点A,在平面直角坐标系中,已知点P,若点P,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于轴对称的点的坐标是( )A. B. C. D.2、点在第( )象限.A.一 B.二 C.三 D.四3、下列各点中,在第二象限的点是( )A. B. C. D.4、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)5、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )A.0<m<2 B.2<m<3 C.m<3 D.m>36、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )A. B. C. D.7、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限9、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)10、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______2、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.3、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.4、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.5、在平面直角坐标系中,如果点在y轴上,那么点M的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点P是x轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______.2、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.3、如图,在平面直角坐标系中,点O为坐标原点,B(0,n),点A在x轴的负半轴上,点C(m,0),且+|n﹣2|=0.(1)求∠BCO的度数;(2)点P从A点出发沿射线AO以每秒2个单位长度的速度运动,同时,点Q从B点出发沿射线BO以每秒1个单位长度的速度运动,设△APQ的面积为S,点P运动的时间为t,求用t表示S的代数式(直接写出t的取值范围);(3)在(2)的条件下,当点P在x轴的正半轴上,连接AQ、BP、PQ,∠BQP=2∠ABC=2∠OAQ,且四边形ABPQ的面积为25,求PQ的长.4、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.5、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标. -参考答案-一、单选题1、D【解析】【分析】在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.【详解】解:点关于轴对称的点的坐标是,故选:D.【点睛】本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.2、D【解析】【分析】第一象限内点的坐标符号为,第二象限内点的坐标符号为,第三象限内点的坐标符号为,第四象限内点的坐标符号为,根据符号特点可直接判断.【详解】解:点在第四象限.故选:D.【点睛】本题考查的是坐标系内各象限内点的坐标特点,掌握“四个象限内点的坐标符号”是解本题的关键.3、D【解析】【分析】根据第二象限内的点的横坐标为负,纵坐标为正判断即可.【详解】解:∵第二象限内的点的横坐标为负,纵坐标为正,∴在第二象限,故选:D.【点睛】本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.4、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.5、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB和△BDC中, ,∴△AOB≌△BDC(AAS),∴AO=BD=2,BO=CD=n=a,∴0<a<1,∵OD=OB+BD=2+a=m,∴ ∴2<m<3,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.6、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.7、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.8、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.10、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.二、填空题1、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.2、(0,3)【解析】【分析】由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.【详解】解:由题意得a+1=0,得a=-1,∴2a+5=3,∴该点坐标为(0,3),故答案为:(0,3).【点睛】此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.3、【解析】【分析】根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标【详解】解:如图,当为直角顶点时,则,作轴,又,同理可得根据三线合一可得是的中点,则综上所述,点C的坐标为故答案为:【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.4、4或【解析】【分析】点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.【详解】解:∵B在x轴上,∴设 ,∵ ,∴ ,①当时,B点横坐标与A点横坐标相同,∴ ,∴ ,∴ ,②当时, ,∵点A坐标为,,∴ ,∴ ,解得: ,∴ ,∴ ,故答案为:4或.【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.5、【解析】【分析】根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.【详解】解:在y轴上,,解得,,点M的坐标为.故答案为:.【点睛】本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.三、解答题1、(1)5,-3;(2)(,0);(3)【解析】【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴,解得:,∴直线BC1的解析式为y=x+,当y=0时,x=,∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,∵××AM=,∴AM=.故答案为:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.2、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【解析】【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM即为所求;∵P是D(-3,0)横坐标减2,纵坐标加3得到的,∴点P的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.3、 (1)(2)(3)5【解析】【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得.(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,,, ,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, ,, ,综上所述:(3)如图,过点作,连接,设,,则,是等腰直角三角形在和中,是等腰直角三角形中,,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.4、 (1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.5、 (1)见解析(2)A1(1,5),B1(1,0),C1(4,3)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(1)解:所作图形△A1B1C1如下所示:(2)解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步练习题,共27页。试卷主要包含了已知点P等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂达标检测题,共23页。试卷主要包含了若平面直角坐标系中的两点A,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共25页。试卷主要包含了下列命题中,是真命题的有,在平面直角坐标系xOy中,点M,在下列说法中,能确定位置的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)