冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共21页。
八年级数学下册第十九章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向2、点A(4,−8)关于轴的对称点的坐标是( )A. B. C. D.3、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.4、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是( )A. B. C. D.5、平面直角坐标系中,点到y轴的距离是( )A.1 B.2 C.3 D.46、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)8、如果点在第四象限内,则m的取值范围( )A. B. C. D.9、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限10、已知点在x轴上,点在y轴上,则点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.2、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.3、点到轴的距离为______,到轴的距离为______.4、将点P(m+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为_________.5、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.三、解答题(5小题,每小题10分,共计50分)1、某城市的简图如图(网格中每个小正方形的边长为1个单位长度),文化馆C的坐标是(﹣2,﹣3),宾馆F的坐标是(3,1),依次完成下列各问:(1)在图中建立平面直角坐标系,写出体育馆A的坐标 ,火车站M的坐标 ;(2)学校B与火车站M关于x轴对称,请在图中标出学校的位置点B,写出点B的坐标 ,计算出图中体育馆A到学校B的直线距离AB= ;(3)如果这幅图的比例尺为1:1000(1个单位长度表示1000米),求出学校到体育馆的实际距离.2、如图,在平面直角坐标系中,的三个顶点的坐标分别为,,.将向下平移3个单位,再向右平移4个单位得到;(1)画出平移后的;(2)写出、、的坐标;(3)直接写出的面积.3、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积 .4、如图,在平面直角坐标系中,点,点A关于x轴的对称点记作点B,将点B向右平移2个单位得点C.(1)分别写出点的坐标:B(____)、C(____);(2)点D在x轴的正半轴上,点E在直线上,如果是以为腰的等腰直角三角形,那么点E的坐标是_____.5、如图,平面直角坐标系中有点A(-1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为 ;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由. -参考答案-一、单选题1、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.2、A【解析】【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:点A(4,−8)关于y轴的对称点的坐标是:(-4,-8).故选:A.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而求出即可.【详解】解:点P(−3,2)关于x轴的对称点的坐标为:(−3,−2).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.4、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.5、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵,∴点到轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.6、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.7、D【解析】【分析】根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点A到y轴的距离是3,∴点A横坐标为-3,过点A作AE⊥OD,垂足为E,∵∠DAO=∠CAO,AC⊥OB,AC=2,∴AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D.【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.8、A【解析】【分析】根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.【详解】解:∵点在第四象限内,∴,解得,;故选:A.【点睛】本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.9、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】【分析】根据题意,结合坐标轴上点的坐标的特点,可得m、n的值,进而可以判断点所在的象限.【详解】解:∵点在x轴上,∴,解得:,∵点在y轴上,∴解得:,∴点的坐标为,即在第二象限.故选:B.【点睛】本题主要考查坐标轴上点的特点,并能根据点的坐标,判断其所在的象限,理解坐标轴上点的特点是解题关键.二、填空题1、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.2、(﹣3,2)【解析】【分析】由题意知m+1=2,得m的值;将m代入求点P的坐标即可.【详解】解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上∴m+1=2解得m=1∴3m﹣6=3×1﹣6=﹣3∴点P的坐标为(﹣3,2)故答案为:(﹣3,2).【点睛】本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.3、 5 2【解析】【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点到轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.4、(1,0)【解析】略5、 3 4 (3,﹣4)【解析】【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.三、解答题1、 (1);(2);(3)学校到体育馆的距离为10000米【解析】【分析】(1)根据点C的坐标得到原点建立直角坐标系,由此得到点A及M的坐标;(2)根据轴对称的性质标出点B,得到点B的坐标,利用勾股定理求出AB的长度;(3)利用10乘以1000即可得到校到体育馆的实际距离.(1)解:建立如图所示的直角坐标系,∴A的坐标,M的坐标;故答案为:;;(2)解:在图中标出学校位置点B,B的坐标,=10;故答案为:,10;(3)解:学校到体育馆的距离为=10000米.【点睛】此题考查了确定直角坐标系,确定象限内点的坐标,轴对称的性质,勾股定理求线段的长度,比例尺计算实际距离,正确掌握象限内点的坐标特点确定坐标轴及勾股定理的计算公式是解题的关键.2、 (1)见解析(2)(3,-3)、(2,0)、(1,-2);(3)2.5【解析】【分析】(1)根据平移的性质分别得到点,再顺次连线即可得到;(2)由点在坐标系中位置直接得到坐标即可;(3)利用面积和差关系计算即可.(1)解:如图,即为所求;(2)解:由图可得(3,-3)、(2,0)、(1,-2);(3)解:的面积==2.5.【点睛】此题考查了在网格中平移作图,确定点的坐标,计算网格中图形的面积,正确掌握平移的性质正确作图是解题的关键.3、 (1)见解析;(2)见解析;(3)4.【解析】【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;(3)利用面积加减法计算.(1)如图所示:(2)解:如图所示:(3)解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,故答案为:4.【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.4、 (1);(2)【解析】【分析】(1)根据点的平移、对称规律求解即可;(2)作轴于F,得到,求出进而得到.(1)解:将点关于x轴的对称点B的坐标为,将点B向右平移2个单位得点C,,故答案为:,;(2)作轴于F,如下图所示:由题意可知,,,点的坐标为,故答案为.【点睛】此题主要考查了关于x轴对称点的性质以及平移的性质,正确掌握点的坐标特点是解题关键.5、 (1)(-2,3)(2)不变,1【解析】【分析】(1)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=2,AE=BO=1,即可得出点C的坐标;(2)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=a,AE=BO=1,从而OE=a=1,即可得出点C的坐标为(-a,a+1),据此可得c+d的值不变.(1)解:如图1中,过点C作CE⊥y轴于E,则∠CEB=∠BOA.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△ABO中,,∴△BCE≌△ABO(AAS),∵A(-1,0),B(0,2),∴AO=BE=1,OB=EC=2,∴OE=1+2=3,∴C(-2,3),故答案为:(-2,3); (2)解:动点A在运动的过程中,c+d的值不变. 如图2,过点C作CE⊥y轴于E,则∠CEB=∠BOA, ∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO, 在△BCE和△ABO中,,∴△BCE≌△ABO(AAS),∵A(-1,0),B(0,a),∴BE=AO=1,CE=BO=a, ∴OE=1+a,∴C(-a,1+a),又∵点C的坐标为(c,d),∴c+d=-a+1+a=1,即c+d的值不变. 【点睛】本题主要考查了全等三角形的性质和判定,余角的性质,坐标与图形,以及等腰直角三角形性质等知识,解决问题的关键是作辅助线构造全等三角形.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试,共27页。试卷主要包含了点关于轴的对称点是,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份八年级下册第十九章 平面直角坐标系综合与测试课时作业,共23页。试卷主要包含了已知点P的坐标为,点关于轴的对称点是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试精练,共24页。试卷主要包含了已知点A,若平面直角坐标系中的两点A,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。