八年级下册第十九章 平面直角坐标系综合与测试巩固练习
展开
这是一份八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共23页。试卷主要包含了在平面直角坐标系中,点A,下列说法错误的是,点在第四象限,则点在第几象限,在平面直角坐标系中,点等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵2、点A的坐标为,则点A在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限4、点与点Q关于y轴对称,则点Q的坐标为( )A. B. C. D.5、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)6、下列说法错误的是( )A.平面内两条互相垂直的数轴就构成了平面直角坐标系B.平面直角坐标系中两条数轴是互相垂直的C.坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D.坐标轴上的点不属于任何象限7、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.10、在平面直角坐标系中,点关于轴对称的点的坐标是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.2、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,(1)当△ABP成为等边三角形时,点 P的坐标为________.(2)若∠APB<45°,则 t的取值范围为_______.3、平面上的点与坐标(有序实数对)是______的.4、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.5、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.三、解答题(5小题,每小题10分,共计50分)1、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.(1)画出关于x轴对称的图形并写出顶点,的坐标;(2)已知P为y轴上一点,若与的面积相等,请直接与出点P的坐标.2、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形;(4)在x轴上找到一点P,使最小,则的最小值是_________.3、如图,是单位为1的方格.(1)在方格中建立直角坐标系,满足A,B两点的坐标分别是(0,2),(0,﹣2),并描出点C(2,﹣2),D(3,0),E(2,2),连接AB,BC,CD,DE,EA.(2)作出(1)中五边形ABCDE关于y轴的对称图形.(3)求(1)中所作的五边形ABCDE的周长和面积.4、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.5、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)△ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 -参考答案-一、单选题1、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.2、A【解析】【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为,∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:,,在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.4、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.5、C【解析】【分析】平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.【详解】解:点A(2,3)关于x轴的对称的点B(2,﹣3),故选:C.【点睛】本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.6、A【解析】略7、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是,∵,∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.9、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.10、D【解析】【分析】在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.【详解】解:点关于轴对称的点的坐标是,故选:D.【点睛】本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.二、填空题1、(0,3)【解析】【分析】由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.【详解】解:由题意得a+1=0,得a=-1,∴2a+5=3,∴该点坐标为(0,3),故答案为:(0,3).【点睛】此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.2、 (0,)或(0,-); t>2+或t<-2-.【解析】【分析】(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;(2)分两种情况,点P在x轴上方,∠APB=45°,根据点P在y轴上,OA=OB=2,可得OP为AB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOC是△PCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点P在x轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.【详解】解:(1)∵△ABP成为等边三角形,点A(2,0),B(-2,0),∴AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解得,∴点P(0,)或(0,-),故答案为(0,)或(0,-);(2)分两种情况,点P在x轴上方,∠APB=45°,∵点P在y轴上,OA=OB=2,∴OP为AB的垂直平分线,∴AP=BP,∴∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,∴△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,∵∠AOC是△PCA的外角,∴∠ACO=∠CPA+∠CAP=45°,∵∠APO=22.5°,∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,∴∠CPA=∠CAP,∴CP=AC=,∴OP=OC+CP=2+∴点P(0,2+)当∠APB<45°时,t>2+,当点P在x轴下方,利用轴对称性质,点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-,综合得∠APB<45°,则 t的取值范围为t>2+或t<-2-.故答案为t>2+或t<-2-.【点睛】本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.3、一一对应【解析】略4、 (9,6)【解析】【分析】根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.【详解】解:根据题意,如图:∴有序数对的数是;由图可知,中含有4个数,中含有9个数,中含有16个数;……∴中含有64个数,且奇数行都是从左边第一个数开始,∵,∴是第九行的第6个数;∴数位置为有序数对是(9,6).故答案为:;(9,6).【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.5、 3 4 (3,﹣4)【解析】【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.三、解答题1、 (1)作图见解析,A1(0,-1),C1(4,-4)(2)(0,6)或(0,-4)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)设P(0,m),构建方程求解即可.(1)解:作出△ABC关于x轴对称的△A1B1C1如图所示.△A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).(2) 设P(0,m),由题意,,解得m=6或-4,∴点P的坐标为(0,6)或(0,-4).【点睛】本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据A,B两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,△ABC即为所求,S△ABC==;【小题3】如图,△A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=A′P+PB= A′B==.【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.3、(1)图见解析;(2)图见解析;(3)五边形的周长为,面积为10.【解析】【分析】(1)先根据点的坐标建立平面直角坐标系,再描点,然后顺次连接即可得;(2)先分别画出点关于轴的对称点,再顺次连接即可得;(3)先根据点坐标、两点之间的距离公式求出的长,从而可得五边形的周长,再根据五边形的面积等于矩形的面积与的面积之和即可得.【详解】解:(1)先根据点的坐标建立平面直角坐标系,再描出点,然后顺次连接,如图所示:(2)先分别画出点关于轴的对称点,再顺次连接,如图所示:(3),,则五边形的周长为,五边形的面积为.【点睛】本题考查了建立平面直角坐标系、画轴对称图形等知识点,熟练掌握平面直角坐标系和轴对称图形的画法是解题关键.4、或##或【解析】【分析】根据题意作出图形,①当时,过点作轴于点,证明;②当时,过点作轴于点,证明,根据点的坐标即可求得的坐标.【详解】解:如图,、,以AB为直角边在第一象限内作等腰直角三角形,则,①当时,过点作轴于点,在与中②当时,过点作轴于点,同理可得,综上,点C的坐标是或故答案为:或【点睛】本题考查了坐标与图形,等腰直角三角形的性质,三角形全等的性质与判定,分类讨论是解题的关键.5、(1)画图见解析,;(2)轴,;(3)【解析】【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试,共27页。试卷主要包含了点关于轴的对称点是,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共21页。试卷主要包含了在平面直角坐标系中,点,在平面直角坐标系中,将点A等内容,欢迎下载使用。
这是一份初中第十九章 平面直角坐标系综合与测试复习练习题,共24页。试卷主要包含了已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P,在平面直角坐标系中,点在,下列命题中,是真命题的有等内容,欢迎下载使用。