初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共29页。试卷主要包含了若点在轴上,则点的坐标为,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△A′B′C′,则点P的坐标为( )A.(0,4) B.(1,1) C.(1,2) D.(2,1)2、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为( )A. B. C. D.3、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、若点在轴上,则点的坐标为( )A. B. C. D.5、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )A. B. C. D.6、点向上平移2个单位后与点关于y轴对称,则( ).A.1 B. C. D.7、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.8、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)9、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为( )A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点关于y轴的对称点的坐标是______.2、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.3、在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1⩾S2,那么点P的纵坐标yp的取值范围是 ________.4、在平面直角坐标系中,点在第______象限5、如果点A的坐标为(2,﹣1),点B的坐标为(5,3),那么A、B两点的距离等于 ___.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出以下顶点的坐标:点A、点B.(2)顶点C关于y轴对称的点C′的坐标.(3)顶点B关于直线x=﹣1的对称点坐标.2、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.3、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为S的ABC沿直线l折叠,重合部分的图形为,将的面积记为,则称为ABC关于直线l的对称度.在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m,0)作垂直于x轴的直线,①当时,ABC关于直线的对称度的值是 :②若ABC关于直线的对称度为1,则m的值是 .(2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.4、△ABC在平面直角坐标系中的位置如图所示(每个小正方形的边长为1).(1)作出△ABC关于y轴对称的△A1B1C1;(2)直接写出点C1的坐标;(3)若P(a,a-1)是△ABC内部一点,点P关于y轴对称点为P',且PP’=6,求点P'的坐标.5、在平面直角坐标系中,已知点,,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C.(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;(2)若点P是y轴上的动点,连接PD.①如图(1),当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标. -参考答案-一、单选题1、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P,由图知,旋转中心P的坐标为(1,2)故选:C.【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.2、B【解析】【分析】根据已知点坐标确定直角坐标系,即可得到答案.【详解】由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为.故选:.【点睛】此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.3、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.4、B【解析】【分析】根据y轴上的点的坐标特点可得a+2=0,再解即可.【详解】解:由题意得:a+2=0,解得:a=-2,则点P的坐标是(0,-2),故选:B.【点睛】此题主要考查了点的坐标,关键是掌握y轴上的点的横坐标为0.5、C【解析】【分析】到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.【详解】解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,∴到△ABC三个顶点距离相等的点的坐标为(0,0),故选:C.【点睛】本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.6、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点 ,∵点与点关于y轴对称,∴ , ,∴ ,∴,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.7、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.8、A【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.9、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是,∵,∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.10、B【解析】【分析】根据第二象限内点的坐标特征以及点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:第二象限的点到轴的距离是3,到轴的距离是2,点的横坐标是,纵坐标是3,点的坐标为.故选:B.【点睛】本题考查了点的坐标,解题的关键是熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值.二、填空题1、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.2、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.3、或【解析】【分析】借助坐标系内三角形底和高的确定,利用三角形面积公式求解.【详解】解:如图,S1=×|yP−yA|×1,S2=×2×1=1,∵S1≥S2,∴|yP-1|≥3,解得:yP≤-2或yP≥4.【点睛】本题主要考查坐标系内三角形面积的计算,关系是确定三角形的底和高.4、三【解析】【分析】根据的横纵坐标都为负,即可判断在第三象限【详解】解:点在第三象限故答案为:三【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5、5【解析】【分析】利用两点之间的距离公式即可得.【详解】解:,,即、两点的距离等于5,故答案为:5.【点睛】本题考查了两点之间的距离公式,熟记两点之间的距离公式是解题关键.三、解答题1、(1),;(2)(2,5);(3)(-5,0)【解析】【分析】(1)结合题意,根据直角坐标系、坐标的性质分析,即可得到答案(2)根据直角坐标系和轴对称的性质,坐标的横坐标取相反数,纵坐标保持不变,即可得到答案;(3)设顶点B关于直线x=﹣1的对称点坐标:,根据直角坐标系和轴对称的性质,列一元一次方程并求解,即可得到答案.【详解】(1)点A坐标为:,点B坐标为:;(2)根据题意,点C坐标为:顶点C关于y轴对称的点C′的坐标:;(3)设顶点B关于直线x=﹣1的对称点坐标: ∵点B坐标为:∴ ∴ ∴顶点B关于直线x=﹣1的对称点坐标:.【点睛】本题考查了直角坐标系、轴对称、一元一次方程的知识;解题的关键是熟练掌握直角坐标系、坐标、轴对称的性质,从而完成求解.2、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.3、(1)①;②0;(2);(3)4或1【解析】【分析】(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到;(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分;;,同时需要满足t的值为整数.【详解】解:(1)①当时,根据题意作图如下:,为等腰直角三角形,,,根据折叠的性质,,,关于直线的对称度的值是:,故答案是:;②如图:根据等腰三角形的性质,当时,有,ABC关于直线的对称度为1,故答案是:0;(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,则需要使得最大,如下图:当时,取到最大,根据,可得为的中位线,,,△ABC关于直线的对称度的最大值为:;(3)若存在直线,使得APQ关于该直线的对称度为1,即为等腰三角形即可,①当时,为等腰三角形,如下图:,;②当时,为等腰三角形,如下图:,;③当时,为等腰三角形,如下图:设,则,根据勾股定理:,,解得:,(不是整数,舍去),综上:满足题意的整数的值为:4或1.【点睛】本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.4、 (1)见解析;(2)(-5,1);(3)(-3,-4)【解析】【分析】(1)根据轴对称的性质得到点A1、B1、C1,顺次连线即可得到△A1B1C1;(2)根据坐标系中位置直接得到;(3)根据轴对称的性质得到P'(-a,a-1),由PP’=6,得到a-(-a)=6,求出a,即可得到点P'的坐标.(1)解:如图:(2)解:点C1的坐标为(-5,1);(3)解:∵P(a,a-1)是△ABC内部一点,点P关于y轴对称点为P',∴P'(-a,a-1),∵PP’=6,∴a-(-a)=6,解得a=3,求点P'的坐标为(-3,-4).【点睛】此题考查了轴对称作图,轴对称的性质,确定直角坐标系中点的坐标,解一元一次方程,正确掌握轴对称的性质是解题的关键.5、 (1) (2)①S△PEC=S△ECD,理由见解析;②点P坐标为(0,5)或(0,).【解析】【分析】(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;(2)①先求出PF=2,再用三角形的面积公式得出S△PEC=CE,S△ECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.(1)解:将AB向下平移5个单位得线段CD, 线段AB平移到CD扫过的面积为: 故答案为:(2)①如图1,过P点作PF⊥AC于F,由平移知,轴,∵A(2,4),∴PF=2,由平移知,CD=AB=4,∴S△PEC=CE•PF=CE×2=CE,S△ECD=CE•CD=CE×4=2CE,∴S△ECD=2S△PEC,即:S△PEC=S△ECD;②(ⅰ)如图2,当PD交线段AC于E,且PD将四边形ACDB分成面积为2:3两部分时,连接PC,延长DC交y轴于点M,则M(0,﹣1),∴OM=1,连接AC,则S△ACD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△CDE=S矩形ABDC=×20=8,由①知,S△PEC=S△ECD=×8=4,∴S△PCD=S△PEC+S△ECD=4+8=12,∵S△PCD=CD•PM=×4PM=12,∴PM=6,∴PO=PM﹣OM=6﹣1=5,∴P(0,5).(ⅱ)如图3,当PD交AB于点F,PD将四边形ACDB分成面积为2:3两部分时,连接PB,延长BA交y轴于点G,则G(0,4),∴OG=4,连接AC,则S△ABD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△BDE=S矩形ABDC=×20=8,∵S△BDE=BD•BE=×5BE=8,∴BE=过P点作PH⊥BD交DB的延长线于点H,∵B(6,4),∴PH=6S△PDB=BD×PH=×5×6=15,∴S△PBE=S△PDB﹣S△BDE=15﹣8=7,∵S△PBE=BE•PG=PG=7,∴PG=,∴PO=PG+OG=+4=,∴P(0,),即:点P坐标为(0,5)或(0,).【点睛】此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.
相关试卷
这是一份初中冀教版第十九章 平面直角坐标系综合与测试练习,共25页。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共21页。试卷主要包含了已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份数学冀教版第十九章 平面直角坐标系综合与测试课堂检测,共25页。试卷主要包含了在平面直角坐标系xOy中,点A,点A关于轴的对称点的坐标是,在平面直角坐标系中,A,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。