初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共22页。试卷主要包含了在下列说法中,能确定位置的是,已知点A,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)2、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )A.将沿轴翻折得到B.将沿直线翻折,再向下平移个单位得到C.将向下平移个单位,再沿直线翻折得到D.将向下平移个单位,再沿直线翻折得到3、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.4、若点在第三象限内,则m的值可以是( )A.2 B.0 C. D.5、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号6、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.28、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是( )A.相 B.马 C.炮 D.兵9、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)10、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(m-1,3)与点B(2,n+1)关于y轴对称,则m+n=_______.2、已知点A关于x轴的对称点B的坐标为(1,﹣2),则点A的坐标为_____.3、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.4、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点______.5、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______三、解答题(5小题,每小题10分,共计50分)1、这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置: 2、如图,的顶点A,B分别在x轴,y轴上,;(1)若,且点B(0,2),C(-2,-1),①点C关于y轴对称点的坐标为______;②求点A的坐标;(2)若点B与原点重合,时,存在第三象限的点E和y轴上的点F,使,且A(3,0),C(0,m),F(0,n),线段EF的长度为,求AE的长.3、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积.4、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.5、如图,在平面直角坐标系中,的三个顶点的坐标分别为,,.将向下平移3个单位,再向右平移4个单位得到;(1)画出平移后的;(2)写出、、的坐标;(3)直接写出的面积. -参考答案-一、单选题1、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【点睛】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.2、C【解析】【分析】根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.【详解】解:A、根据图象可得:将沿x轴翻折得到,作图正确;B、作图过程如图所示,作图正确;C、如下图所示为作图过程,作图错误;D、如图所示为作图过程,作图正确;故选:C.【点睛】题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.3、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.4、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,∴m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.5、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.6、A【解析】【分析】求出点P平移后的坐标,继而可判断点P的位置.【详解】解:点P(-2,1)向右平移3个单位后的坐标为(1,1),点(1,1)在第一象限.故选:A.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7、B【解析】【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.8、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.9、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.10、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、1【解析】【分析】根据关于y轴对称的点,纵坐标不变,横坐标互为相反数,列出方程求解即可.【详解】解:∵点A(m-1,3)与点B(2,n+1)关于y轴对称,∴m-1=-2,n+1=3,解得,m=-1,n=2,m+n=-1+2=1,故答案为:1.【点睛】本题考查了关于y轴对称点的坐标变化,解题关键是明确关于y轴对称的点,纵坐标不变,横坐标互为相反数.2、【解析】【分析】根据“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”,求解即可【详解】解:∵点A关于x轴的对称点B的坐标为(1,﹣2),∴点A的坐标为故答案为:【点睛】本题考查了关于x轴对称的点的坐标特征,掌握“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”是解题的关键.3、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.4、(4,﹣2)【解析】【分析】由题意根据炮的坐标建立平面直角坐标系,然后写出马的坐标即可.【详解】解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查坐标确定位置,准确确定出坐标原点的位置是解题的关键.5、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.三、解答题1、见解析【解析】【详解】2、 (1)①(2,-1);②(3,0).(2)6.【解析】【分析】(1)①根据关于y轴对称的点纵坐标不变、横坐标变为原来的相反数即可解答;②设A点坐标为(a,0),再运用两点间距离公式求得BC的长,进而求得AB的长,然后根据两点间距离公式即可求解;(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M,则C(0,m)、H(0,-n)、m<0、n>0,进一步说明HC=EF;然后再证明△FEM≌△HCN得到FM=HN、EM=CN,证明Rt△AFM≌Rt△AHN得到AM=AN,进一步说明AE=AC,最后求得AC的长即可.(1)解:(1)①由关于y轴对称的点纵坐标不变、横坐标变为原来的相反数,则点C(-2,-1)关于y轴对称点的坐标为(2,-1);故答案是(2,-1);②设A点坐标为(a,0)∵B(0,2),C(-2,-1),∴BC=∴AB=BC=∴,解得a=3.∴点A的坐标为(3,0).(2)解:(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M, ∵C(0,m),H(0,-n),m<0,n>0,∴HC=OC-OH=-m-n,∵EF=-m-n,∴HC=EF,∵∠AEF=∠ACO=30°,∴∠FME=∠HNC,∴△FEM≌△HCN(AAS),∴FM=HN,EM=CN,在Rt△AFM和Rt△AHN中,AF=AH,FM=HN∴Rt△AFM≌Rt△AHN(HL),∴AM=AN,∴EM+AM=CN+AN,∴AE=AC,∵∠ACO=30°,A(3,0),∴OA=3,∴AC=2OA=6,∴AE=6.【点睛】本题主要考查了轴对称、两点间的距离公式、勾股定理、全等三角形的判定与性质等知识点,综合应用相关知识成为解答本题的关键.3、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.4、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.5、 (1)见解析(2)(3,-3)、(2,0)、(1,-2);(3)2.5【解析】【分析】(1)根据平移的性质分别得到点,再顺次连线即可得到;(2)由点在坐标系中位置直接得到坐标即可;(3)利用面积和差关系计算即可.(1)解:如图,即为所求;(2)解:由图可得(3,-3)、(2,0)、(1,-2);(3)解:的面积==2.5.【点睛】此题考查了在网格中平移作图,确定点的坐标,计算网格中图形的面积,正确掌握平移的性质正确作图是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共24页。试卷主要包含了已知点A,点关于轴对称的点是,点A关于轴的对称点的坐标是,已知点P等内容,欢迎下载使用。
这是一份八年级下册第十九章 平面直角坐标系综合与测试练习,共25页。试卷主要包含了若点P,点在第四象限,则点在第几象限,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份初中第十九章 平面直角坐标系综合与测试复习练习题,共24页。试卷主要包含了已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P,在平面直角坐标系中,点在,下列命题中,是真命题的有等内容,欢迎下载使用。