搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系专项训练试卷

    2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系专项训练试卷第1页
    2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系专项训练试卷第2页
    2021-2022学年冀教版八年级数学下册第十九章平面直角坐标系专项训练试卷第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了在平面直角坐标系中,点在,点关于轴对称的点是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点轴上,则点的坐标为(       ).A. B. C. D.2、在平面直角坐标系中,已知a<0, b>0, 则点Pab)一定在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限3、在平面直角坐标系中,已知点P(5,−5),则点P在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点  A.第一象限 B.第二象限 C.第三象限 D.第四象限5、若点在第一象限,则a的取值范围是(       A. B. C. D.无解6、点P在第二象限内,点Px轴的距离是6,到y轴的距离是2,那么点P的坐标为(  )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)7、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.8、小明在介绍郑州外国语中学位置时,相对准确的表述为(       A.陇海路以北 B.工人路以西C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角9、点关于轴对称的点是(  )A. B. C. D.10、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是(  )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在平面直角坐标系中,点A(2,﹣2)、点B(﹣3,4)、点C(﹣5,0),那么△ABC的面积等于 ___.2、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.3、是平面直角坐标系中的两点,线段长度的最小值为 __.4、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.5、如果点在第四象限,那么点在第______象限.三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中,已知点的边上任意一点,经过平移后得到,点的对应点为(1)直接写出点的坐标.(2)在图中画出(3)连接,求的面积.(4)连接,若点轴上,且三角形的面积为8,请直接写出点的坐标.2、如图,在平面直角坐标系中,点O为坐标原点,B(0,n),点Ax轴的负半轴上,点Cm,0),且+|n﹣2|=0.(1)求∠BCO的度数;(2)点PA点出发沿射线AO以每秒2个单位长度的速度运动,同时,点QB点出发沿射线BO以每秒1个单位长度的速度运动,设APQ的面积为S,点P运动的时间为t,求用t表示S的代数式(直接写出t的取值范围);(3)在(2)的条件下,当点Px轴的正半轴上,连接AQBPPQ,∠BQP=2∠ABC=2∠OAQ,且四边形ABPQ的面积为25,求PQ的长.3、在平面直角坐标系xOy中,对于PQ两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称PQ两点为同距点.图中的PQ两点即为同距点.(1)已知点A的坐标为(﹣3,1),①在点E(0,4),F(5,﹣1),G(2,2)中,为点A的同距点的是  ②若点Bx轴上,且AB两点为同距点,则点B的坐标为  ③若点Cm﹣1,﹣1)为点A的同距点,求m的值;(2)已知点S(﹣3,0),点T(﹣2,0).①若在线段ST上存在点Dn,﹣n﹣1)的同距点,求n的取值范围;②若点K为点T的同距点,直接写出线段OK长度的最小值.4、如图,在平面直角坐标系中,描出点(1)在平面直角坐标系中画出,则的面积是            (2)若点D与点C关于y轴对称,则点D的坐标为            (3)求线段OC的长;(4)已知Px轴上一点,若的面积为4,求点的坐标.5、定义:若实数xy,满足k为常数,),则在平面直角坐标系中,称点为点的“k值关联点”.例如,点是点的“4值关联点”.(1)判断在两点中,哪个点是的“k值关联点”;(2)设两个不相等的非零实数mn满足点是点的“k值关联点”,则_______________ -参考答案-一、单选题1、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点轴上,解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.2、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.3、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:;第二象限:;第三象限:;第四象限:;是基础知识要熟练掌握.5、B【解析】【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解:在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.6、C【解析】【分析】根据点(xy)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(xy),∵点Px轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.7、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.8、D【解析】【分析】根据位置的确定需要两个条件:方向和距离进行求解即可.【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D.【点睛】本题主要考查了确定位置,熟知确定位置的条件是解题的关键.9、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(34),B3,﹣2),故选:C【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.二、填空题1、16【解析】【分析】BA点分别作y轴的垂线,过AC点作x轴的垂线,四条垂线分别相交于DEFA点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,则,根据题中坐标即可求解.【详解】如图所示,过BA点分别作y轴的垂线,过AC点作x轴的垂线,四条垂线分别相交于DEFA点,则四边形DEAF为矩形,△ABF、△DBC、△ACE为直角三角形,故答案为:16.【点睛】对于坐标系中不规则三角形的面积计算,我们通常将其补成矩形,再减去三个规则的直角三角形.将复杂的不规则图形面积求解转化成简单的规则图形求解.2、【解析】【分析】先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.【详解】根据图形可以知道,黑棋①的位置应该表示为故答案为:【点睛】此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.3、3【解析】【分析】画出图形,根据垂线段最短解答即可.【详解】解:如图.轴上.线段的长度为点到y轴上点的距离.若使得线段长度的最小,由垂线段最短,可知当A时,即轴,线段长度最小.此时最小值为3.故答案为:3.【点睛】本题考查了坐标与图形,垂线段最短,数形结合是解答本题的关键.4、15【解析】【分析】直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.【详解】解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),a-1-3=2-2b,即a+2b=6,∴2a+4b+3=2(a+2b)+3=15,故答案为:15.【点睛】本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5、一【解析】【分析】先判断,再判断,结合象限内点的坐标规律可得答案.【详解】解:在第四象限,在第一象限.故答案为:一.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限三、解答题1、 (1)(2)见解析(3)的面积=6(4)【解析】【分析】(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1B1C1的坐标;(2)利用点A1B1C1的坐标描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算AOA1的面积;(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.(1)解:(2)解:如图,为所作;(3)解:的面积(4)解:设三角形的面积为8,,解得点的坐标为【点睛】本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.2、 (1)(2)(3)5【解析】【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, 综上所述:(3)如图,过点,连接,则是等腰直角三角形是等腰直角三角形中,【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.3、 (1)①EG;②(﹣4,0)或(4,0);③4或﹣2(2)①n≤1或﹣2≤n;②【解析】【分析】(1)①把各点的横纵坐标的绝对值相加得4,则是A的同距点;②因为点Bx轴上,所以设Bx,0),则|x|=4,可得结论;③根据同距点的定义得出关于m的方程,即可求解;(2)①根据已知,列出n的不等式,即可得到答案;②设Kxy),求出x2+y2的最小值,即可得到OK的最小值.(1)解:①∵点A的坐标为(﹣3,1),A到两坐标轴的距离之和等于4,∵点E(0,4)两坐标轴的距离之和等于4,F(5,﹣1)两坐标轴的距离之和等于6,G(2,2)两坐标轴的距离之和等于4,∴点A的同距点的是EG②点Bx轴上,设Bx,0),则|x|=4,x=±4,B(﹣4,0)或(4,0);③若点Cm﹣1,﹣1)为点A的同距点,则|m﹣1|+1=4,解得:m=4或﹣2.(2)解:①∵点S(﹣3,0),点T(﹣2,0),∴线段ST上的点到x轴、y轴距离的和大于等于2且小于等于3,而在线段ST上存在点Dn,﹣n﹣1)的同距点,∴2≤|n|+|﹣n﹣1|≤3,解得:n≤1或﹣2≤n②设Kxy),则OK,当x2+y2最小时,OK最小,∵点K为点T的同距点,∴|x|+|y|=2,x2+y2+2|xy|=4,∴2|xy|=4﹣(x2+y2)①,∵(|x|﹣|y|)2≥0,x2+y2﹣2|xy|≥0,即2|xy|≤x2+y2②,由①②可得4-(x2+y2)≤x2+y2x2+y2≥2,OK≥0,OK最小值为【点睛】本题借助平面直角坐标系中点的坐标特点考查新定义“同距点”,解题的关键是理解“同距点”的含义,灵活运用所学知识列方程、不等式解决问题.4、 (1)画图见解析,4;(2)(-4,3);(3)5;(4)(10,0)或(-6,0)【解析】【分析】(1)根据ABC三点的坐标,在坐标系中描出ABC,然后顺次连接ABC即可得到答案;然后根据ABC的面积等于其所在的长方形面积减去周围三个三角形面积求解即可;(2)根据关于y轴对称的两个点的坐标特征:纵坐标相同,横坐标互为相反数求解即可;(3)过C点作轴于点D,则,由勾股定理求解即可.(4)设P点坐标为(m,0),则,由的面积为4,得到,由此求解即可.(1)解:如图所示,ABC即为所求;故答案为:4;(2)解:∵点D与点C关于y轴对称,点C的坐标为(4,3),∴点D的坐标为(-4,3),故答案为:(-4,3);(3)解:连接OCC点作轴于点D中,(4)解:∵x轴上一点,∴可设P点坐标为(m,0),的面积为4,P点坐标为(10,0)或(-6,0).【点睛】本题主要考查了在坐标系中描点、连线,关于y轴对称的点的坐标特征,两点距离公式,三角形面积,绝对值方程,熟知相关知识是解题的关键.5、 (1)(2)3【解析】【分析】(1)根据“k值关联点”的含义,只要找到k的值,且满足即可作出判断,这只要根据,若两式求得的k的值相等则是,否则不是;(2)根据“k值关联点”的含义得到两个等式,消去k即可求得mn的值.(1)对于点A∴点不是的“k值关联点”;对于点B:∴点的“值关联点”;(2)∵点是点的“k值关联点”得:故答案为:3【点睛】本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k值关联点”的含义. 

    相关试卷

    数学第十九章 平面直角坐标系综合与测试练习:

    这是一份数学第十九章 平面直角坐标系综合与测试练习,共24页。试卷主要包含了如果点P,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试同步达标检测题,共25页。试卷主要包含了在平面直角坐标系中,点P,点P关于y轴对称点的坐标是.,已知点A,在平面直角坐标系中,将点A,在平面直角坐标系中,点等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共23页。试卷主要包含了下列命题为真命题的是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map