初中第十九章 平面直角坐标系综合与测试复习练习题
展开
这是一份初中第十九章 平面直角坐标系综合与测试复习练习题,共24页。试卷主要包含了已知点和点关于轴对称,则的值为,在平面直角坐标系中,点P,在平面直角坐标系中,点在,下列命题中,是真命题的有等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )A.0<m<2 B.2<m<3 C.m<3 D.m>32、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是( )A.4 B.3,4 C.4,5 D.2,3,43、如图,树叶盖住的点的坐标可能是( )A. B. C. D.4、若点在第三象限内,则m的值可以是( )A.2 B.0 C. D.5、已知点和点关于轴对称,则的值为( )A.1 B. C. D.6、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)7、如图,在平面直角坐标系中,将等边绕点A旋转180°,得到,再将绕点旋转180°,得到,再将绕点旋转180°,得到,…,按此规律进行下去,若点,则点的坐标为( )A. B. C. D.8、在平面直角坐标系中,点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限9、下列命题中,是真命题的有( )①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤10、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点与点关于x轴对称,则m+n=______.2、如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P为顶点的三角形与OAB全等,则满足条件的P点的坐标是________.3、在平面直角坐标系中,点P(7,6)关于x轴对称点P′的坐标是 _____.4、点关于y轴的对称点的坐标是______.5、如图,直线,在某平面直角坐标系中,轴l1,轴l2,点的坐标为,点的坐标为,那么点在第__象限.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,的三个顶点为,,.(1)画出关于x轴对称的;(2)将的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点,,,画出.2、某城市的简图如图(网格中每个小正方形的边长为1个单位长度),文化馆C的坐标是(﹣2,﹣3),宾馆F的坐标是(3,1),依次完成下列各问:(1)在图中建立平面直角坐标系,写出体育馆A的坐标 ,火车站M的坐标 ;(2)学校B与火车站M关于x轴对称,请在图中标出学校的位置点B,写出点B的坐标 ,计算出图中体育馆A到学校B的直线距离AB= ;(3)如果这幅图的比例尺为1:1000(1个单位长度表示1000米),求出学校到体育馆的实际距离.3、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.(1)若与关于y轴对称,画出;(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.4、已知三顶点在如图所示的平面直角坐标系中的网格点位置.(1)写出,,三点的坐标;(2)若各顶点的纵坐标都不变,横坐标都乘以,在同一坐标系中描出对应的点,,,并依次连接这三个点得;(3)求的面积.5、在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出以下顶点的坐标:点A、点B.(2)顶点C关于y轴对称的点C′的坐标.(3)顶点B关于直线x=﹣1的对称点坐标. -参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB和△BDC中, ,∴△AOB≌△BDC(AAS),∴AO=BD=2,BO=CD=n=a,∴0<a<1,∵OD=OB+BD=2+a=m,∴ ∴2<m<3,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴ ,解答2<m<5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.3、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.4、C【解析】【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,∴m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.5、A【解析】【分析】直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.【详解】解答:解:点和点关于轴对称,,,则.故选:A.【点睛】此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.6、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.7、C【解析】【分析】根据题意先求得的坐标,进而求得的坐标,发现规律,即可求得的坐标.【详解】解:∵是等边三角形,,将等边绕点A旋转180°,得到,∴,则同理可得,……,即故选C【点睛】本题考查了等边三角形的性质,旋转的性质,含30度角的直角三角形的性质,勾股定理,坐标与图形,找到规律是解题的关键.8、B【解析】【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:,,在第二象限,故选:B.【点睛】本题考查了点的坐标,四个象限内坐标的符号:第一象限:,;第二象限:,;第三象限:,;第四象限:,;是基础知识要熟练掌握.9、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.10、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、3【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出m,n的值,再代入所求式子计算即可.【详解】∵点与点关于x轴对称∴∴m+n=3故答案为:3.【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键.2、或##或【解析】【分析】根据题意,这两个三角形中为公共边,故分,两种情况讨论,根据题意作出图形,进而求得点的坐标【详解】解:如图,①作关于的对称的点,连接 B(4,2),则②作关于()对称的点,连接,则又则点故答案为:或【点睛】本题考查了坐标与图形,全等三角形的性质与判定,轴对称的性质,掌握轴对称的性质是解题的关键.3、(7,-6)【解析】【分析】在平面直角坐标系中,关于x轴对称点的特征是横坐标不变,纵坐标变为原数的相反数,据此解题.【详解】解:点P(7,6)关于x轴对称点P′的坐标是(7,-6)故答案为:(7,-6).【点睛】本题考查平面直角坐标系中关于x轴对称点的特征,是基础考点,掌握相关知识是解题关键.4、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.5、一【解析】【分析】根据题意作出平面直角坐标系,根据图象可以直接得到答案.【详解】如图,点的坐标为,点的坐标为,点位于第二象限,点位于第四象限,点位于第一象限.故答案是:一.【点睛】本题考查了坐标与图形性质,解题时,利用了“数形结合”的数学思想,比较直观.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)分别作出,,关于轴对称的三个点,连接即可得到.(2)求出将横坐标与纵坐标同时乘以的对应点,连接即可得到.(1)解:分别作出,,关于轴对称的三个点为,连接得到,如下图:(2)解:将将横坐标与纵坐标同时乘以的对应点分别为:,描点后连线得,如下图:【点睛】本题考查了作轴对称图形,坐标的变化,解题的关键是掌握坐标的变化规律,再准确描点.2、 (1);(2);(3)学校到体育馆的距离为10000米【解析】【分析】(1)根据点C的坐标得到原点建立直角坐标系,由此得到点A及M的坐标;(2)根据轴对称的性质标出点B,得到点B的坐标,利用勾股定理求出AB的长度;(3)利用10乘以1000即可得到校到体育馆的实际距离.(1)解:建立如图所示的直角坐标系,∴A的坐标,M的坐标;故答案为:;;(2)解:在图中标出学校位置点B,B的坐标,=10;故答案为:,10;(3)解:学校到体育馆的距离为=10000米.【点睛】此题考查了确定直角坐标系,确定象限内点的坐标,轴对称的性质,勾股定理求线段的长度,比例尺计算实际距离,正确掌握象限内点的坐标特点确定坐标轴及勾股定理的计算公式是解题的关键.3、 (1)见解析(2)【解析】【分析】(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.(1)解:如图所示,即为所求;(2)解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,由图可知点P的坐标为(3,3).【点睛】本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.4、 (1),,;(2)见解析;(3)的面积为3.5.【解析】【分析】(1)根据点在坐标系中的位置可直接读出点的坐标;(2)纵坐标都不变,横坐标都乘以−1,得,,,然后依次连接即可得;(3)在方格点中利用正方形的面积减去三个三角形的面积即可得.(1)解:根据点在坐标系中的位置可得:,,;(2)解:纵坐标都不变,横坐标都乘以−1,可得:,,,然后依次连接,即为所求;(3)解:的面积为:,∴的面积为.【点睛】题目主要考查坐标与图形变换,点的变换等,理解题意,熟练掌握点的变换是解题关键.5、(1),;(2)(2,5);(3)(-5,0)【解析】【分析】(1)结合题意,根据直角坐标系、坐标的性质分析,即可得到答案(2)根据直角坐标系和轴对称的性质,坐标的横坐标取相反数,纵坐标保持不变,即可得到答案;(3)设顶点B关于直线x=﹣1的对称点坐标:,根据直角坐标系和轴对称的性质,列一元一次方程并求解,即可得到答案.【详解】(1)点A坐标为:,点B坐标为:;(2)根据题意,点C坐标为:顶点C关于y轴对称的点C′的坐标:;(3)设顶点B关于直线x=﹣1的对称点坐标: ∵点B坐标为:∴ ∴ ∴顶点B关于直线x=﹣1的对称点坐标:.【点睛】本题考查了直角坐标系、轴对称、一元一次方程的知识;解题的关键是熟练掌握直角坐标系、坐标、轴对称的性质,从而完成求解.
相关试卷
这是一份八年级下册第十九章 平面直角坐标系综合与测试练习,共25页。试卷主要包含了若点P,点在第四象限,则点在第几象限,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试综合训练题,共22页。试卷主要包含了在下列说法中,能确定位置的是,已知点A,如图是象棋棋盘的一部分,如果用等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试练习题,共20页。试卷主要包含了下列说法错误的是,在平面直角坐标系中,点,点P,在平面直角坐标系中,A等内容,欢迎下载使用。