搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系定向测试试题(含详细解析)

    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系定向测试试题(含详细解析)第1页
    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系定向测试试题(含详细解析)第2页
    2022年必考点解析冀教版八年级数学下册第十九章平面直角坐标系定向测试试题(含详细解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题

    展开

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共23页。试卷主要包含了点P,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )
    A.B.C.D.
    2、点关于轴的对称点是( )
    A.B.C.D.
    3、如图,网格中的每个小正方形边长均为1,的顶点均落在格点上,若点A的坐标为,则到三个顶点距离相等的点的坐标为( )
    A.B.C.D.
    4、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为( )
    A.B.C.D.
    5、点P(-3,4)到坐标原点的距离是( )
    A.3B.4C.-4D.5
    6、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
    A.陇海路以北B.工人路以西
    C.郑州市人民政府西南方向D.陇海路和工人路交叉口西北角
    7、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )
    A.B.C.D.
    8、点P(﹣1,2)关于y轴对称点的坐标是( ).
    A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)
    9、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )
    A.B.C.D.
    10、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将点P(m+1,n-2)向上平移 3 个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为_________.
    2、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.
    3、如果点在第四象限,那么点在第______象限.
    4、一般地,在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点_________;将点(x,y)向左平移a个单位长度,可以得到对应点_________;将点(x,y)向上平移b个单位长度,可以得到对应点_________;将点(x,y)向下平移b个单位长度,可以得到对应点_________.
    5、今年清明假期164万游客游园,玉渊潭、动物园、天坛公园游客最多,如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为,表示中堤桥的点的坐标为时,表示留春园的点的坐标为__.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:
    (1)请你画出将向右平移3个单位后得到对应的;
    (2)再请你画出将沿x轴翻折后得到的;
    (3)若连接、,请你直接写出四边形的面积.
    2、如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且+(a+2b﹣4)2=0.
    (1)在坐标轴上存在一点M,使COM的面积=ABC的面积,求出点M的坐标;
    (2)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变,若不变,求其值;若改变,说明理由.
    3、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣1,3),B(﹣4,2),C(﹣2,﹣2),将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,点A、B、C的对应点分别为D、E、F.
    (1)在图中画出△DEF,并直接写出点E的坐标;
    (2)判断线段AC与DF的关系为 ;
    (3)连接BD、CD,并直接写出△BCD的面积.
    4、在平面直角坐标系中,点O为坐标原点,点A(﹣2,2)(﹣3,﹣2)的位置如图所示.
    (1)作出线段AB关于y轴对称的线段A′B′,并写出点A、B的对称点A′、B′的坐标;
    (2)连接AA′和BB′,请在图中画一条线段,将图中的四边形AA′B′B分成两个图形,一个是轴对称图形,另一个是中心对称图形,并且线段的一个端点为四边形的顶点(每个小正方形的顶点均为格点).
    5、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
    (1)在图中作出△ABC关于y轴的对称图形△A1B1C1
    (2)写出点A1,B1,C1的坐标.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.
    【详解】
    解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).
    故选:B.
    【点睛】
    此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
    2、A
    【解析】
    【分析】
    直接利用关于x轴对称点的性质得出答案.
    【详解】
    解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).
    故选:A.
    【点睛】
    此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.
    3、C
    【解析】
    【分析】
    到△ABC三个顶点距离相等的点是AB与AC的垂直平分线的交点,画出交点,进而得出其坐标即可.
    【详解】
    解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,
    ∴到△ABC三个顶点距离相等的点的坐标为(0,0),
    故选:C.
    【点睛】
    本题主要考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.
    4、C
    【解析】
    【分析】
    根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.
    【详解】
    解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,
    点M的横坐标为,点的纵坐标为,
    点M的坐标为:.
    故选:C.
    【点睛】
    本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.
    5、D
    【解析】
    【分析】
    利用两点之间的距离公式即可得.
    【详解】
    解:点到坐标原点的距离是,
    故选:D.
    【点睛】
    本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.
    6、D
    【解析】
    【分析】
    根据位置的确定需要两个条件:方向和距离进行求解即可.
    【详解】
    解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
    B、工人路以西只有方向,不能确定位置,故不符合题意;
    C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
    D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
    故选D.
    【点睛】
    本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
    7、A
    【解析】
    【分析】
    根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.
    【详解】
    解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,
    ∴OA1=,OA2=,OA3=,……,OA1033=,
    ∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,
    1033=8×129+1,
    ∴点A1033在x轴负半轴,
    ∵OA1033=,
    ∴点A1033的坐标为:,
    故选:A.
    【点睛】
    本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.
    8、A
    【解析】
    【分析】
    平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
    【详解】
    解:∵点P(-1,2)关于y轴对称,
    ∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
    故选:A.
    【点睛】
    本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
    9、B
    【解析】
    【分析】
    根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.
    【详解】
    解:∵用表示5排7座
    ∴坐标的第一个数表示排,第二个数表示座
    ∴小嘉坐在7排8座可表示出(7,8).
    故选B.
    【点睛】
    本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.
    10、C
    【解析】
    【分析】
    根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.
    【详解】
    解:∵点关于轴对称的点是,
    ∵,
    ∴点关于轴对称的点在第三象限.
    故选:C.
    【点睛】
    本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.
    二、填空题
    1、(1,0)
    【解析】

    2、
    【解析】
    【分析】
    过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.
    【详解】
    解:如图,过点C作 轴于点D,
    ∵OA=OB=1,∠AOB=90°,
    ∴∠ABO=45°,
    ∵∠ABC=90°,
    ∴∠CBD=45°,
    ∴∠BCD=45°,
    ∴BD=CD,
    ∵BC=2,
    ∴ ,
    ∴BD=CD=2,
    ∴OD=OB+BD=3,
    ∴点,
    将△ABC绕点O顺时针旋转,第一次旋转90°后,点,
    将△ABC绕点O顺时针旋转,第二次旋转90°后,点,
    将△ABC绕点O顺时针旋转,第三次旋转90°后,点,
    将△ABC绕点O顺时针旋转,第四次旋转90°后,点,

    由此发现,△ABC绕点O顺时针旋转四次一个循环,
    ∵ ,
    ∴第2021次旋转结束时,点C的坐标为.
    故答案为:
    【点睛】
    本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.
    3、一
    【解析】
    【分析】
    先判断,再判断,结合象限内点的坐标规律可得答案.
    【详解】
    解:点在第四象限,


    在第一象限.
    故答案为:一.
    【点睛】
    本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.
    4、 (x+a,y) (x-a,y) (x,y+b) (x,y-b)
    【解析】

    5、
    【解析】
    【分析】
    根据表示西桥的点的坐标为,表示中堤桥的点的坐标为建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.
    【详解】
    根据题意可建立如下所示平面直角坐标系,
    则表示留春园的点的坐标为,
    故答案为.
    【点睛】
    此题考查坐标确定位置,解题的关键就是确定坐标原点和,轴的位置.
    三、解答题
    1、(1)见解析;(2)见解析;(3)16
    【解析】
    【分析】
    (1)利用平移的性质得出对应点位置进而得出答案;
    (2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;
    (3)运用割补法求解即可
    【详解】
    解:(1)如图,即为所作;
    (2)如图,即为所作;
    (3)四边形的面积=12×(2+6)×4=16
    【点睛】
    此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.
    2、 (1)或
    (2)2
    【解析】
    【分析】
    (1)根据算术平方根的非负性,完全平方的非负性,求得的值,进而求得的坐标,分类讨论点在轴或轴上,根据三角形的面积公式进行计算即可;
    (3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.
    (1)
    +(a+2b﹣4)2=0.
    解得
    又C(﹣1,2)
    ①若点在轴上时,设
    COM的面积=ABC的面积,
    解得
    ②若点在轴上时,设
    COM的面积=ABC的面积,
    解得
    综上所述,点M的坐标为或
    (2)
    的值不变,理由如下:
    ∵CD⊥y轴,AB⊥y轴,
    ∴∠CDO=∠DOB=90°,
    ∴AB∥CD,
    ∴∠OPD=∠POB.
    ∵OF⊥OE,
    ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,
    ∵OE平分∠AOP,
    ∴∠POE=∠AOE,
    ∴∠POF=∠BOF,
    ∴∠OPD=∠POB=2∠BOF.
    ∵∠DOE+∠DOF=∠BOF+∠DOF=90°,
    ∴∠DOE=∠BOF,
    ∴∠OPD=2∠BOF=2∠DOE,
    ∴=2.
    【点睛】
    本题考查了非负性,二元一次方程组,三角形面积公式,平行线的性质等知识,解决问题的关键是灵活运用所学知识解决问题,学会利用分类讨论思想解决问题.
    3、 (1)见解析,点E的坐标为(0,1)
    (2)平行且相等
    (3)△BCD的面积为14
    【解析】
    【分析】
    (1)根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为D3,2,E0,1,F2,-3,再顺次连接,即可求解;
    (2)根据线段AC与DF是平移前后的对应线段,即可求解;
    (3)以 为底,则高为4,即可求解.
    (1)
    根据题意得:A(﹣1,3),B(﹣4,2),C(﹣2,﹣2)先向右平移4个单位长度,再向下平移1个单位长度的对应点为D3,2,E0,1,F2,-3,
    如图所示,△DEF即为所求;
    (2)
    线段AC与DF的关系为平行且相等,理由如下:
    ∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度得到△DEF,
    ∴线段AC与DF是对应线段,
    ∴线段AC与DF平行且相等;
    (3)
    S△BCD=×7×4=14.
    【点睛】
    本题主要考查了图形的变换——平移,熟练掌握图形平移前后对应段相等,对应角相等是解题的关键.
    4、 (1)图见解析,点A′(2,2)、B′(3,-2);
    (2)见解析
    【解析】
    【分析】
    (1)根据轴对称确定点A′、B′,连线即可;
    (2)作线段得到平行四边形AA′DB和等腰三角形A′DB′,则等腰三角形A′DB′是轴对称图形,平行四边形AA′DB是中心对称图形.
    (1)
    解:如图,线段点A′B′即为所求,点A′(2,2)、B′(3,-2);
    (2)
    解:如图,线段即为所求.

    【点睛】
    此题考查了作图能力:轴对称图形及中心对称图形,以及确定直角坐标系中点的坐标,正确掌握轴对称的性质及中心对称图形的定义是解题的关键.
    5、 (1)见解析
    (2)A1(1,5),B1(1,0),C1(4,3)
    【解析】
    【分析】
    (1)分别作出A,B,C的对应点A1,B1,C1即可.
    (2)根据A1,B1,C1的位置写出坐标即可.
    (1)
    解:所作图形△A1B1C1如下所示:
    (2)
    解:根据所作图形知:A1(1,5),B1(1,0),C1(4,3).
    【点睛】
    本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y轴对称的点,纵坐标相同,横坐标互为相反数.

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试达标测试,共27页。试卷主要包含了点关于轴的对称点是,在平面直角坐标系中,点A等内容,欢迎下载使用。

    2020-2021学年第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试同步达标检测题,共24页。试卷主要包含了在平面直角坐标系中,点在,已知点P等内容,欢迎下载使用。

    数学八年级下册第十九章 平面直角坐标系综合与测试练习题:

    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试练习题,共23页。试卷主要包含了如图,树叶盖住的点的坐标可能是,已知点和点关于轴对称,则的值为,在平面直角坐标系中,A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map