初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后作业题,共29页。试卷主要包含了如图,树叶盖住的点的坐标可能是,如图,,且点A等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.3、下列各点中,在第二象限的点是( )A. B. C. D.4、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )A. B. C. D.5、如图,树叶盖住的点的坐标可能是( )A. B. C. D.6、如图,在平面直角坐标系中,将等边绕点A旋转180°,得到,再将绕点旋转180°,得到,再将绕点旋转180°,得到,…,按此规律进行下去,若点,则点的坐标为( )A. B. C. D.7、如图,,且点A、B的坐标分别为,则长是( )A. B.5 C.4 D.38、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )A. B. C. D.9、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为( )A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.2、若|2x﹣4|+(y+3)2=0,点A(x,y)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是______.3、经过点Q(0,1)且平行于x轴的直线可以表示为直线_________.4、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为 _____.5、已知点是第二象限的点,则的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、如图,线段AB的两个端点的坐标分别为,,线段AB与线段,关于直线m(直线m上各点的横坐标都为5)对称,线段,与线段关于直线n(直线n上各点的横坐标都为9)对称.(1)在图中分别画出线段、;(2)若点关于直线m的对称点为,点关于直线n的对称点为,则点的坐标是 .2、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.3、如图,在平面直角坐标系中,点,点A关于x轴的对称点记作点B,将点B向右平移2个单位得点C.(1)分别写出点的坐标:B(____)、C(____);(2)点D在x轴的正半轴上,点E在直线上,如果是以为腰的等腰直角三角形,那么点E的坐标是_____.4、如图,在正方形网格中,每个小正方形的边长都为1,点A,点B在网格中的位置如图所示.(1)请在下面方格纸中建立适当的平面直角坐标系,使点A、点B的坐标分别为、;(2)点C的坐标为,连接,则的面积为_________.(3)在图中画出关于y轴对称的图形;(4)在x轴上找到一点P,使最小,则的最小值是_________.5、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可). -参考答案-一、单选题1、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.3、D【解析】【分析】根据第二象限内的点的横坐标为负,纵坐标为正判断即可.【详解】解:∵第二象限内的点的横坐标为负,纵坐标为正,∴在第二象限,故选:D.【点睛】本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.4、B【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.【详解】解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.5、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴符合条件.故选:B.【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.6、C【解析】【分析】根据题意先求得的坐标,进而求得的坐标,发现规律,即可求得的坐标.【详解】解:∵是等边三角形,,将等边绕点A旋转180°,得到,∴,则同理可得,……,即故选C【点睛】本题考查了等边三角形的性质,旋转的性质,含30度角的直角三角形的性质,勾股定理,坐标与图形,找到规律是解题的关键.7、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A(-1,0),B(0,2),∴OA=1,OB=2,∵△AOB≌△CDA,∴OB=AD=2,∴OD=AD+AO=2+1=3,故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.8、C【解析】【分析】求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点A作AC⊥OB于C,∵,∠AOB=,∴,∴,∴A.∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,∴第1秒时,点A的对应点的坐标为,∵三角板每秒旋转,∴此后点的位置6秒一循环,∵,∴则第2022秒时,点A的对应点的坐标为,故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.9、B【解析】【分析】设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.10、C【解析】【分析】根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(x,y),∵点P到x轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,∴y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.二、填空题1、10【解析】【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP=A'P+BP=A'B,此时P点到A、B的距离最小,∵A(0,3),∴A'(0,﹣3),∵B(6,5),5-(-3)=8,6-0=6∴A'B==10,∴P点到A、B的距离最小值为10,故答案为:10.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离是解题的关键.2、(-2,3)【解析】【分析】依据非负数的性质,即可得到x,y值,依据关于x轴、y轴对称的点的坐标特征,即可得出点C的坐标.【详解】解:∵|2x﹣4|+(y+3)2=0,∴2x-4=0,y+3=0,∴x=2,y=-3,∴A(2,-3),∵点A(x,y)关于x轴对称的点为B,∴B(2,3),∵点B关于y轴对称的点为C,∴C(-2,3),故答案为:(-2,3).【点睛】本题主要考查了非负数的性质以及关于x轴、y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.3、y=1【解析】【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点Q(0,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点Q(0,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1,故答案为:y=1.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点纵坐标相等,平行于y轴的直线上所有点横坐标相等.4、 (6,0)或(2,0)【解析】【分析】根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.【详解】根据点Q(-5,4)是点P(x,y)的级派生点,∴,解得:,∴P点坐标为(4,0).设点A坐标为(t,0),∵,∴,解得:或∴A点坐标为(6,0)或(2,0).故答案为(6,0)或(2,0).【点睛】本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.5、【解析】【分析】根据点是第二象限的点,可得 ,即可求解.【详解】解:∵点是第二象限的点,∴ ,解得: ,∴的取值范围是.故答案为:【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.三、解答题1、(1)见解析;(2)【解析】【分析】(1)分别作出A、B二点关于直线m的对称点A1、B1,再分别作A1、B1,二点关于直线n的对称点A2、B2即可;(2)根据轴对称的性质得出坐标即可.【详解】解:(1)如图,线段,即为所求;(2)由轴对称性质可得、横坐标平均数等于5,纵坐标相等,则 , 由轴对称性质可得、横坐标平均数等于9,纵坐标相等,则.【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称的性质.2、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【解析】【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.【详解】(1)∵,∴.∵,∴,∴,∴,∴,.(2)如图,过点F作FH⊥AO于点H∵AF⊥AE∴∠FHA=∠AOE=90°,∵ ∴∠AFH=∠EAO又∵AF=AE,在和中 ∴∴AH=EO=2,FH=AO=4∴OH=AO-AH=2∴F(-2,4) ∵OA=BO, ∴FH=BO在和中 ∴∴HD=OD∵ ∴HD=OD=1∴D(-1,0)∴D(-1,0),F(-2,4);(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S∴∴, ∴∴ ∴∴等腰∴NQ=NO,∵NG⊥PN, NS⊥EG∴ ∴, ∴ ∵,∴ ∵点E为线段OB的中点∴ ∴ ∴ ∴ ∴∴ ∴∴等腰∴NG=NP, ∵∴ ∴∠QNG=∠ONP在和中 ∴∴∠NGQ=∠NPO,GQ=PO∵,∴PO=PB∴∠POE=∠PBE=45°∴∠NPO=90°∴∠NGQ=90°∴∠QGR=45°. 在和中 ∴.∴QR=OE在和中 ∴∴QM=OM.∵NQ=NO,∴NM⊥OQ∵∴等腰∴ ∵ ∴在和中 ∴∴NS=EM=4,MS=OE=2∴N(-6,2).【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.3、 (1);(2)【解析】【分析】(1)根据点的平移、对称规律求解即可;(2)作轴于F,得到,求出进而得到.(1)解:将点关于x轴的对称点B的坐标为,将点B向右平移2个单位得点C,,故答案为:,;(2)作轴于F,如下图所示:由题意可知,,,点的坐标为,故答案为.【点睛】此题主要考查了关于x轴对称点的性质以及平移的性质,正确掌握点的坐标特点是解题关键.4、 (1)见解析(2)(3)见解析(4)【解析】【分析】(1)根据A,B两点坐标确定平面直角坐标系即可;(2)把三角形的面积看成矩形面积减去周围三个三角形面积即可;(3)根据轴对称的性质找到对应点,顺次连接即可;(4)作点A关于x轴的对称点A′,连接BA′交x轴于点P,此时AP+BP最小.【小题1】解:如图,平面直角坐标系如图所示;【小题2】如图,△ABC即为所求,S△ABC==;【小题3】如图,△A1B1C1即为所求;【小题4】如图,点P即为所求,AP+BP=A′P+PB= A′B==.【点睛】本题考查作图-轴对称变换,勾股定理、轴对称最短问题等知识,解题的关键是熟练掌握轴对称变换的性质,属于中考常考题型.5、 (1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵ ,,∴ ,,.∵ ,∴ .在中,由,得.解得.∴ ,.∵ 是由旋转得到的,∴ ,.∴ .∴ .∴ .在中,.∴ 点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴ .∴ .∵ 是由旋转得到的,∴ .在中,由,得.∴ 点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
相关试卷
这是一份数学第十九章 平面直角坐标系综合与测试课后测评,共25页。试卷主要包含了点P关于y轴对称点的坐标是.,点关于轴对称的点是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课时作业,共26页。试卷主要包含了点关于轴对称点的坐标为,若平面直角坐标系中的两点A,下列命题中为真命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共20页。试卷主要包含了下列各点中,在第二象限的点是,点A关于y轴的对称点A1坐标是,点A关于轴的对称点的坐标是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。