搜索
    上传资料 赚现金
    英语朗读宝

    2022年冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(无超纲带解析)

    2022年冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(无超纲带解析)第1页
    2022年冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(无超纲带解析)第2页
    2022年冀教版八年级数学下册第十九章平面直角坐标系综合练习试卷(无超纲带解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题

    展开

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共28页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    2、已知点A的坐标为,则点A关于x轴对称的点的坐标为( )
    A.B.C.D.
    3、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是( )
    A.B.C.D.
    4、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
    A.轴B.轴
    C.直线(直线上各点横坐标均为1)D.直线(直线上各点纵坐标均为1)
    5、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )
    A.(2,3)B.(3,2)C.(-2,-3)D.(-3,-2)
    6、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )
    A.(3,﹣4)B.(﹣3,2)C.(3,﹣2)D.(﹣2,4)
    7、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
    A.(a,b)B.(-a,-b)C.(a+2,b+4)D.(a+4,b+2)
    9、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
    A.(2,﹣3)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)
    10、在平面直角坐标系中,点关于轴对称的点的坐标是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.
    2、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是______.
    3、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为 _____.
    4、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.
    5、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.
    如图中,点A是第______象限内的点,点B是第______象限内的点,点D是______上的点.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,平面直角坐标系中,每个小正方形的边长都是1.
    (1)请画出关于轴对称的轴对称图形;并写出点,,三点的坐标;
    (2)在轴、轴上找到与点、距离相等的点,.
    (要求:尺规作图,不写画法,保留作图痕迹).
    2、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.
    (1)如图①,当点C落在上时,求点D的坐标;
    (2)如图②,当时,求点C的坐标;
    (3)在(2)的条件下,求点D的坐标(直接写出结果即可).
    3、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
    (1)作出ABC关于y轴的对称图形;
    (2)写出点的坐标;
    (3)若坐标轴上存在一点E,使EBC是以BC边为底边的等腰三角形,直接写出点E的坐标.
    (4)在y轴上找一点P,使PA+PC的长最短.
    4、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:
    平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),
    (1)①请在图中画出平面直角坐标系xOy;
    ②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;
    (2)设l是过点C且平行于y轴的直线,
    ①点A关于直线l的对称点的坐标是 ;
    ②在直线l上找一点P,使最小,在图中标出此时点P的位置;
    ③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示).
    5、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.
    【详解】
    解:∵点P(2a﹣4,a+3)在x轴上,
    ∴a+3=0,
    解得a=-3,
    ∴﹣a+2=5,3a﹣1=-10,
    ∴点(﹣a+2,3a﹣1)所在的象限为第三象限,
    故选:D.
    【点睛】
    此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.
    2、B
    【解析】
    【分析】
    利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点A(x,y)关于x轴的对称点A′的坐标是(x,−y),进而求出即可.
    【详解】
    解:点A(2,-1)关于x轴的对称点的坐标为:(2,1).
    故选:B.
    【点睛】
    此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.
    3、C
    【解析】
    【分析】
    根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解
    【详解】
    解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,


    点A的坐标是,
    故选:C.
    【点睛】
    本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
    4、C
    【解析】
    【分析】
    利用成轴对称的两个点的坐标的特征,即可解题.
    【详解】
    根据A点和B点的纵坐标相等,即可知它们的对称轴为.
    故选:C.
    【点睛】
    本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
    5、D
    【解析】
    【分析】
    根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.
    【详解】
    ∵点A到y轴的距离是3,
    ∴点A横坐标为-3,
    过点A作AE⊥OD,垂足为E,
    ∵∠DAO=∠CAO,AC⊥OB,AC=2,
    ∴AE=2,
    ∴点A的纵坐标为2,
    ∴点A的坐标为(-3,2),
    ∴点A关于x轴对称的点的坐标为(-3,-2),
    故选D.
    【点睛】
    本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.
    6、C
    【解析】
    【分析】
    根据轴对称的性质解决问题即可.
    【详解】
    解:∵△ABC关于直线y=1对称,
    ∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,
    ∵点A的坐标是(3,4),
    ∴B(3,﹣2),
    故选:C.
    【点睛】
    本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.
    7、A
    【解析】
    【分析】
    求出点P平移后的坐标,继而可判断点P的位置.
    【详解】
    解:点P(-2,1)向右平移3个单位后的坐标为(1,1),
    点(1,1)在第一象限.
    故选:A.
    【点睛】
    本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
    8、D
    【解析】
    【分析】
    根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
    【详解】
    解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
    ∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
    ∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
    故选:D.
    【点睛】
    此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
    9、A
    【解析】
    【分析】
    关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
    【详解】
    解:点(2,3)关于x轴对称的是
    故选A
    【点睛】
    本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
    10、D
    【解析】
    【分析】
    在平面直角坐标系中,点关于轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变.
    【详解】
    解:点关于轴对称的点的坐标是,
    故选:D.
    【点睛】
    本题考查关于轴对称的点的坐标特征,是基础考点,掌握相关知识是解题关键.
    二、填空题
    1、(﹣3,2)
    【解析】
    【分析】
    由题意知m+1=2,得m的值;将m代入求点P的坐标即可.
    【详解】
    解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上
    ∴m+1=2
    解得m=1
    ∴3m﹣6=3×1﹣6=﹣3
    ∴点P的坐标为(﹣3,2)
    故答案为:(﹣3,2).
    【点睛】
    本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.
    2、或
    【解析】
    【分析】
    根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得.
    【详解】
    解:点C关于坐标轴翻折,分两种情况讨论:
    点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;
    点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;
    故答案为:或.
    【点睛】
    题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.
    3、 (6,0)或(2,0)
    【解析】
    【分析】
    根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.
    【详解】
    根据点Q(-5,4)是点P(x,y)的级派生点,
    ∴,
    解得:,
    ∴P点坐标为(4,0).
    设点A坐标为(t,0),
    ∵,
    ∴,
    解得:或
    ∴A点坐标为(6,0)或(2,0).
    故答案为(6,0)或(2,0).
    【点睛】
    本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.
    4、 (9,6)
    【解析】
    【分析】
    根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
    【详解】
    解:根据题意,如图:
    ∴有序数对的数是;
    由图可知,中含有4个数,中含有9个数,中含有16个数;
    ……
    ∴中含有64个数,且奇数行都是从左边第一个数开始,
    ∵,
    ∴是第九行的第6个数;
    ∴数位置为有序数对是(9,6).
    故答案为:;(9,6).
    【点睛】
    此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
    5、 象限 不属于 一 三 y轴
    【解析】

    三、解答题
    1、(1)图见解析,A'(-1,-3),B'(-2,-1),C'(1,1);(2)见解析
    【解析】
    【分析】
    (1)先分别作出A、B、C关于轴对称的点,,,再依次连接即可,坐标观察图形即可得出;
    (2)作BC的垂直平分线即可.
    【详解】
    (1)图形如下:
    点A'(-1,-3),B'(-2,-1),C'(1,1).
    (2)作BC的垂直平分线与轴、轴的交点即为,
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.
    2、 (1)
    (2)
    (3)
    【解析】
    【分析】
    (1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;
    (2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;
    (3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.
    (1)
    如图,过点作,垂足为.
    ∵ ,,
    ∴ ,,.
    ∵ ,
    ∴ .
    在中,由,
    得.解得.
    ∴ ,.
    ∵ 是由旋转得到的,
    ∴ ,.
    ∴ .
    ∴ .∴ .
    在中,.
    ∴ 点的坐标为.
    (2)
    如图,过点作,垂足为.
    由已知,得.
    ∴ .
    ∴ .
    ∵ 是由旋转得到的,
    ∴ .
    在中,由,得.
    ∴ 点的坐标为.
    (3)
    如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.
    ∵∠DOC=30°,∠COT=45°,
    ∴∠DOJ=75°,
    ∴∠ODJ=90°-75°=15°,
    ∵KD=KO,
    ∴∠KDO=∠KOD=15°,
    ∴∠OKJ=∠KDO+∠KOD=30°,
    ∴OK=DK=2m,KJ=m,
    ∵OD2=OJ2+DJ2,
    ∴22=m2+(2m+m)2,
    解得m=(负根已经舍弃),
    ∴OJ=,DJ=,
    ∴D.
    【点睛】
    本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
    3、 (1)作图见解析
    (2)
    (3)或
    (4)作图见解析
    【解析】
    【分析】
    (1)分别确定关于轴的对称点 再顺次连接即可;
    (2)根据图1的位置可得其坐标;
    (3)根据网格图的特点画的垂直平分线,则垂直平分线与坐标轴的交点符合要求;
    (4)由(1)得:关于轴对称,所以连接交轴于 可得是符合要求的点.
    (1)
    解:如图1,是所求作的三角形,
    (2)
    解:由图1可得:
    (3)
    解:如图1,为等腰三角形,且为底边,
    根据网格图的特点画的垂直平分线交坐标轴于

    (4)
    解:如图2,由(1)得:关于轴对称,
    所以连接交轴于

    此时最短,所以即为所求作的点.
    【点睛】
    本题考查的是轴对称的作图,线段垂直平分线的性质,等腰三角形的定义,利用轴对称的性质确定线段和的最小值,熟练的应用轴对称的性质是解本题的关键.
    4、(1)作图见解析,(1,2),(1,-2);(2)①(5,1);②P点位置见解析;③(2-m,n)
    【解析】
    【分析】
    (1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数.
    (2)由C点坐标(1,2)可知直线l为x=1
    ①点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1).
    ②由①可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点.
    ③设点Q(m,n)关于l的对称点为(x,y),则有(m+x)÷2=1,y=n,即可求得对称点(2-m,n)
    【详解】
    (1)平面直角坐标系xOy如图所示
    由图象可知C点坐标为(1,2)
    点是 C点关于x轴对称得来的
    则的横坐标不变,纵坐标为C点纵坐标的相反数
    即点坐标为(1,-2).
    (2)如图所示,由C点坐标(1,2)可知直线l为x=1
    ①A点坐标为(-3,1),
    关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变
    则为坐标为(5,1)
    ②连接①所得B,B交直线x=1于点P
    由两点之间线段最短可知PA1+PB为B时最小
    又∵点是点A关于直线l的对称点
    ∴PA1=PA
    ∴为B时最小
    故P即为所求点.
    ③设任意格点Q(m,n)关于直线x=1的对称点为(x,y)
    有(m+x)÷2=1,y=n
    即x=2-m,y=n
    则纵坐标不变,横坐标为原来横坐标相反数加2
    即对称点坐标为(2-m,n).
    【点睛】
    本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.
    5、 (1)22.5°;
    (2)d=2t;
    (3)5
    【解析】
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.

    相关试卷

    2021学年第十九章 平面直角坐标系综合与测试课时作业:

    这是一份2021学年第十九章 平面直角坐标系综合与测试课时作业,共21页。试卷主要包含了在平面直角坐标系中,已知点P,在平面直角坐标系中,将点A,点P等内容,欢迎下载使用。

    2020-2021学年第十九章 平面直角坐标系综合与测试课堂检测:

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试课堂检测,共24页。试卷主要包含了已知点P的坐标为,点关于轴对称点的坐标为,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共26页。试卷主要包含了在平面直角坐标系中,将点A,下列各点中,在第二象限的点是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map