七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题
展开
这是一份七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共17页。试卷主要包含了已知x=1是不等式,不等式组的最小整数解是,下列不等式不能化成x>-2的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<02、下列各数中,是不等式的解的是( )A.﹣7 B.﹣1 C.0 D.93、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得( )A.5x﹣2(20﹣x)≥80 B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<804、不等式3+2x≥1的解在数轴上表示正确的是( )A. B.C. D.5、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤16、不等式组有两个整数解,则的取值范围为( )A. B. C. D.7、不等式组的最小整数解是( )A.5 B.0 C. D.8、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.99、下列不等式不能化成x>-2的是( )A.x+4>2 B.x-1>-3 C.-2x>-4 D.2x>-410、如果x>y,则下列不等式正确的是( )A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若减去-(2x-3)所得的差是非负数,用不等式表示:__________.2、按照下面给定的计算程序,当时,输出的结果是_____;使代数式的值小于20的最大整数x是__________.3、一次知识竞赛一共有26道题,答对一题得4分,不答得0分,答错一题扣2分,小明有1道题没答,竞赛成绩不少于88分,则小明至少答对______题.4、小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他还可能买多少根火腿肠?解:设他还可能买x根火腿肠. 根据题意,得:_________,解这个不等式,得:_________,所以他最多还能买_________根火腿肠.5、满足不等式4x-9<0的正整数解为________________.三、解答题(5小题,每小题10分,共计50分)1、在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若,直接写出该程序需要运行 次才停止;(2)若该程序只运行了1次就停止了,则的取值范围是 .(3)若该程序只运行了2次就停止了,求的取值范围.2、解不等式组,并写出它的所有正整数解.3、解不等式组:,并写出它的所有非负整数解.4、解不等式:﹣2<.5、阅读下面材料:分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.李阳在解分式不等式时,是这样思考的:根据两数相除,同号得正,异号得负.原分式不等式可转化为下面两个不等式组:①或②.解不等式组①得,解不等式组②得不等式组无解,所以原不等式的解集为.请你参考李阳思考问题的方法,解分式不等式. -参考答案-一、单选题1、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.2、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.3、C【解析】【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.4、B【解析】【分析】不等式移项,合并同类项,把x系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x≥1,移项得:2x≥1﹣3,合并同类项得:2x≥﹣2,解得:x≥﹣1,数轴表示如下:.故选:B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.6、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于的不等式组,求出即可.【详解】解:,解不等式①得:,解不等式②得:,不等式组的解集为,不等式组有两个整数解,,故选:C.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于的不等式组,难度适中.7、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9、C【解析】【分析】分别解不等式进行判断即可.【详解】解:A.x+4>2,两边同减4得x>-2,不符合题意;B.x-1>-3,两边同加1得x>-2,不符合题意;C.-2x>-4,两边同除以-2得x<2,符合题意;D.2x>-4,两边同除以2得x>-2,不符合题意.故选:C.【点睛】此题考查了解一元一次不等式,解题的关键是正确掌握不等式的性质计算.10、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵x>y,∴x﹣1>y﹣1,故本选项不符合题意;B.∵x>y,∴5x>5y,故本选项不符合题意;C.∵x>y,∴,故本选项符合题意; D.∵x>y,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.二、填空题1、##【解析】【分析】根据题意由减去-(2x-3)所得的差是非负数,即可列出不等式,解出不等式即可.【详解】解:依题意得:-[-(2x-3)]≥0,即+2x-3≥0.故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式以及整式的加减,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2、 1 7【解析】【分析】当时,代数式的值,根据1<20,可确定输出的值为1,列不等式,求解即可得答案.【详解】解:当时,,∵,∴当时,输出的值为1,,移项合并得,系数化1得,∴x最大整数=7.故1;7.【点睛】本题考查流程图与代数式求值,列不等式,不等式的最大整数解,掌握代数式求值,列不等式是解题关键.3、23【解析】【分析】设小明至少答对 题,则答错 题,根据“小明有1道题没答,竞赛成绩不少于88分,”列出不等式,即可求解.【详解】解:设小明答对 题,则答错 题,根据题意得: ,解得: ,答:小明至少答对23题.故答案为:23【点睛】本题主要考查了一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.4、 2x+3×5≤26 x≤5.5 5【解析】略5、1,2【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【详解】解:4x-9<0,4x<9,解得,x<,∴不等式的正整数解是1,2;故答案为:1,2.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.三、解答题1、 (1)4(2)(3)【解析】【分析】(1)当时,根据2x-3求代数式的值,,循环代入x=7,代数式的值,,再代入x=11,,再看x=19时,.该程序需要运行4次才停止.(2)根据一次运算就停止,列不等式,解不等式即可. (3)根据该程序只运行1次结果小于23,2次结果大于23就停,解不等式①得x≤13,解不等式②得x>8,不等式的解集:.(1)解:,,,.若,该程序需要运行4次才停止.故答案为:4.(2)解:该程序只运行了1次就停止了依题意得:,解得:. 故答案为:.(3)依题意得:,解不等式①得x≤13,解不等式②得x>8,不等式的解集:.答:的取值范围为.【点睛】本题考查了程序与代数式的值,一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)代入,找出程序运行的次数;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)根据各数量之间的关系,正确列出一元一次不等式组.2、﹣2≤x<3.5,正整数解有:1、2、3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.【详解】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3.【点睛】本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.3、﹣2<x≤2,非负整数解为0,1,2.【解析】【分析】分别得出两个不等式的解集,找出两个解集的公共部分即可得不等式组的解集,进而可得不等式组的非负整数解.【详解】,解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,∴非负整数解为0,1,2.【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.4、x>【解析】【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可.【详解】解:不等式整理得,,去分母,得2(2x+1)-12<3(3x-2).去括号,得4x+2-12<9x-6.移项,得4x-9x<-6+12-2.合并同类项,得-5x<4,系数化为1,得x>.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5、x>2或x≤【解析】【分析】先根据有理数的除法法则得出①或②,再分别求解即可得出答案.【详解】解:根据两数相除,同号得正,异号得负.原分式不等式可转化为下面两个不等式组:①或②,解不等式组①得x>2,解不等式组②:x≤,所以原不等式的解集为x>2或x≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试练习,共15页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共17页。试卷主要包含了下列说法中不正确的个数有,下列不等式不能化成x>-2的是等内容,欢迎下载使用。
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共18页。试卷主要包含了关于x的方程3﹣2x=3,某矿泉水每瓶售价1.5元,现甲,下列命题中,假命题是等内容,欢迎下载使用。