初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习
展开
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习,共19页。试卷主要包含了如果,那么下列结论中正确的是,若,则不等式组的解集是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的不等式组有解,则a的取值不可能是( )A.0 B.1 C.2 D.32、将不等式的解集表示在数轴上,正确的是( )A. B.C. D.3、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.24、若,,则下列不等式不一定成立的是( )A. B. C. D.5、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y6、如果,那么下列结论中正确的是( )A. B. C. D.7、若,则不等式组的解集是( )A. B. C. D.无解8、如果不等式组的解集是,那么a的值可能是( )A.-2 B.0 C.-0.7 D.9、某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A.t>33 B.t≤24 C.24<t<33 D.24≤t≤3310、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )A.2 B.7 C.11 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的解集是__.2、一次知识竞赛一共有26道题,答对一题得4分,不答得0分,答错一题扣2分,小明有1道题没答,竞赛成绩不少于88分,则小明至少答对______题.3、x的取值与代数式ax+b的对应值如表:x……﹣2﹣10123……ax+b……97531﹣1……根据表中信息,得出了如下结论:①b=5;②关于x的方程ax+b=-l的解是x=3;③a+b>-a+b;④ax+b的值随着x值的增大而增大.其中正确的是______.(写出所有正确结论的序号)4、关于的方程的解是负数,则满足条件的的最小整数值是_____.5、关于x的不等式组恰好有3个整数解,那么m的取值范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并将其解集在数轴上表示出来.2、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?3、小聪去购买笔记本和钢笔共30件,每本笔记本2元,每支钢笔5元,若购买的钢笔数量不少于笔记本的数量.(1)小聪至多能买几本笔记本?(2)若小聪只带了130元钱,此时他至少要买几本笔记本?4、美术小组准备到文具店购买铅笔和橡皮.已知1支铅笔的批发价比零售价低0.2元,1块橡皮的批发价比零售价低0.3元.如果购买60支铅笔和30块橡皮,那么都需按零售价购买,共支付105元;如果购买90支铅笔和60块橡皮,那么都需按批发价购买,共支付144元;那么有以下两种购买方案可供选择:方案一铅笔和橡皮都按批发价购买;方案二铅笔和橡皮都按零售价购买,总费用打m折.若根据方案一购买,共需支付144元.(1)铅笔和橡皮的批发价各是多少?(2)若根据方案二购买所需的费用不少于方案一所需的费用,求m的最小值.5、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数. -参考答案-一、单选题1、D【解析】【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a的取值范围解答即可.【详解】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选D.【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.2、D【解析】【分析】先求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集.【详解】解:,解得:,表示在数轴上,如图所示:.故选:D.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.3、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.4、D【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、若,,则,故本选项正确,不符合题意;B、若,,则,故本选项正确,不符合题意;C、若,则 ,若,则,故本选项正确,不符合题意;D、若,,当 时,,故本选项错误,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.6、A【解析】【分析】结合不等式的性质,对各个选项逐个分析,即可得到答案.【详解】∵∴,,即选项B错误;∴,,即选项A正确,选项C错误;根据题意,无法推导得,故选项D不正确;故选:A.【点睛】本题考查了不等式的性质 ,解题的关键是熟练掌握不等式的性质并能灵活运用.7、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、A【解析】【分析】根究不等式组解集的确定原则,判定a≤-1,比较大小后,确定即可.【详解】∵不等式组的解集是,∴a≤-1,只有-2满足条件,故选A.【点睛】本题考查了不等式组解集,正确理解不等式组解集的确定原则是解题的关键.9、D【解析】【分析】已知某市最高气温和最低气温,可知该市的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,∴该市气温t(℃)的变化范围是:24≤t≤33;故选:D.【点睛】本题的关键在于准确理解题意,理解到当天的气温的变化范围应在最低气温和最低气温之间.10、B【解析】【分析】先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.【详解】解:由,得:,由,得:,不等式组的解集为,,解得;解关于的方程得:,方程的解为非负整数,或3或6或9,解得或2或3.5或5,所以符合条件的所有整数的和,故选:B.【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.二、填空题1、##【解析】【分析】移项合并化系数为1即可.【详解】.移项合并同类项,得:.化系数为.故答案为:.【点睛】本题考查一次不等式的解法,掌握一般步骤是关键,属于基础题.2、23【解析】【分析】设小明至少答对 题,则答错 题,根据“小明有1道题没答,竞赛成绩不少于88分,”列出不等式,即可求解.【详解】解:设小明答对 题,则答错 题,根据题意得: ,解得: ,答:小明至少答对23题.故答案为:23【点睛】本题主要考查了一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.3、①②【解析】【分析】根据题意得:当 时, ,可得①正确;当 时,,可得关于x的方程ax+b=-l的解是x=3;故②正确;再由当 时,,当 时,,可得③错误;然后求出 ,,可得当x的值越大, 越小,即 也越小,可得④错误;即可求解.【详解】解:根据题意得:当 时, ,故①正确; 当 时,,∴关于x的方程ax+b=-l的解是x=3;故②正确;当 时,,当 时,,∵ ,∴ ,故③错误;∵ ,当 时,,∴ ,解得: ,∴ ,∴当x的值越大, 越小,即 也越小,∴ax+b的值随着x值的增大而减小,故④错误;所以其中正确的是①②.故答案为:①②【点睛】本题主要考查了求代数式的值,解二元一次方程组,不等式的性质,理解表格的意义是解题的关键.4、5【解析】【分析】将方程转化为用m来表示x的值的形式,然后根据m的最小正整数解来取x的值即可.【详解】解:,.关于的方程的解是负数,,解得,满足条件的的最小整数值是5.故答案为:5.【点睛】本题主要考查了关于一元一次方程的解,一元一次不等式等知识点,熟悉相关性质是解题的关键.5、1≤m<2【解析】【分析】表示出不等式组的解集,根据不等式组恰好有3个整数解,确定出的范围即可.【详解】解:不等式组整理得,关于的不等式组恰好有3个整数解,整数解为0,1,2,,解得:.故答案为:.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练掌握一元一次不等式组的解法.三、解答题1、﹣2<x≤4,数轴见解析【解析】【分析】求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:,由①得,x>﹣2;由②得,x≤4,故此不等式组的解集为:﹣2<x≤4.在数轴上表示为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、 (1)甲种文具需要20元,一个乙种文具需要10元(2)20【解析】【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:,解得:,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.3、 (1)小聪最多能购买15本笔记本(2)他至少要买7本笔记本【解析】【分析】(1)设小聪购买的笔记本数量为x本,则购买支钢笔,然后根据购买的钢笔数量不少于笔记本的数量列出不等式求解即可;(2)设小聪购买的笔记本数量为y本,则购买支钢笔,然后根据购买的钢笔数量不少于笔记本的数量以及钢笔和笔记本的花费不能超过130元列出不等式求解即可.(1)解:设小聪购买的笔记本数量为x本,则购买支钢笔,由题意得:,解得,∴小聪最多能购买15本笔记本;(2)解:设小聪购买的笔记本数量为y本,则购买支钢笔,由题意得:,解得,∴他至少要买7本笔记本.【点睛】本题主要考查了不等式组的应用,解题的关键在于能够根据题意正确列出不等式求解.4、 (1)铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;(2)所以m的最小值是8.【解析】【分析】(1)设铅笔的批发价为每支x元,橡皮的批发价为每块y元,根据题意列二元一次方程组求解即可;(2)根据题意列不等式求解即可.(1)解:设铅笔的批发价为每支x元,橡皮的批发价为每块y元.根据题意,得方程组,解方程组,得,答:铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;(2)解:根据题意,得不等式(90×1+60×1.5)· ≥144.解不等式,得m≥8.所以m的最小值是8.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准关系,正确列出一元一次不等式.5、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,列二元一次方程求解;(2)设他平均每天的送件数是件,则他平均每天的揽件数是件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,根据题意得:,解得,答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是件,则他平均每天的揽件数是件,根据题意得:,解得,是正整数,的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试一课一练,共17页。试卷主要包含了下列说法正确的是,若成立,则下列不等式成立的是,若,则不等式组的解集是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题,共19页。试卷主要包含了如果,那么下列结论中正确的是,下列各式等内容,欢迎下载使用。