冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习,共19页。试卷主要包含了设m为整数,若方程组的解x,若,则下列式子中,错误的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )A.27 B.22 C.13 D.92、不等式组的最小整数解是( )A.5 B.0 C. D.3、如果不等式组的解集是,那么a的值可能是( )A.-2 B.0 C.-0.7 D.4、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.75、下列各式中,是一元一次不等式的是( )A.5-3<8 B.2x-1< C.≥8 D.+2x≤186、若,则下列式子中,错误的是( )A. B. C. D.7、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.8、若方程组的解满足,则k的值可能为( )A.-1 B.0 C.1 D.29、将不等式的解集表示在数轴上,正确的是( )A. B.C. D.10、若,则不等式组的解集是( )A. B. C. D.无解第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、3x与2y的差是非正数,用不等式表示为_________.2、若实数满足,则的取值范围为___________.3、一元一次不等式的概念:2x-6>0,3x-24<4+x这些不等式的左右两边都是______,只含有______,并且未知数的最高次数是______,像这样的不等式,叫做一元一次不等式.4、不等式组的解集是 _____.5、某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为 _____盒.三、解答题(5小题,每小题10分,共计50分)1、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?2、解不等式组,并把它的解集在数轴上表示出来.3、求不等式组:的最大整数解.4、某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x正整数),求有哪几种购买方案.5、解不等式组,并求出它的正整数解. -参考答案-一、单选题1、A【解析】【分析】先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.【详解】解:解不等式①,得: ,解不等式②,得: ,∴不等式的解集为,∵不等式组有且只有三个整数解,∴ ,解得: ,∵m为整数,∴ 取5,6,7,8,9,10,11,12,13,14,15,,解得: ,∴当取 时,x,y均为整数,∴符合条件的所有m的和为 .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.2、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、A【解析】【分析】根究不等式组解集的确定原则,判定a≤-1,比较大小后,确定即可.【详解】∵不等式组的解集是,∴a≤-1,只有-2满足条件,故选A.【点睛】本题考查了不等式组解集,正确理解不等式组解集的确定原则是解题的关键.4、B【解析】【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、D【解析】【分析】一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.根据一元一次不等式的定义逐项判断即可.【详解】A:不含有未知数,不是一元一次不等式,故本选项不符合题意;B:不是整式,故本选项不符合题意;C:不是整式,故本选项不符合题意;D:是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意.故选:D.【点睛】本题考查一元一次不等式的定义, 一元一次不等式必须具备三个条件:(1)只含有一个未知数;(2)未知数的最高次数是1;(3)分母中不含有未知数,即不等号两边都是整式.6、D【解析】【分析】利用不等式的基本性质逐一判断即可.【详解】解:A. 若,则正确,故A不符合题意;B. 若,则正确,故B不符合题意;C. 若,则,正确,故C不符合题意;D. 若d,则,所以D错误,故D符合题意,故选:D.【点睛】本题考查不等式的性质,掌握相关知识是解题关键.7、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.8、D【解析】【分析】将两个方程组相加得到:,再由即可求出进而求解.【详解】解:由题意可知:,将①+②得到:,∵,∴,解得,故选:D.【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.9、D【解析】【分析】先求出不等式的解集,然后画出数轴,并在数轴上表示出不等式的解集.【详解】解:,解得:,表示在数轴上,如图所示:.故选:D.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.10、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题1、3x-2y≤0【解析】【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x与2y的差是非正数,用不等式表示为3x-2y≤0.故答案为:3x-2y≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.2、【解析】【分析】先根据已知等式可得,从而可得,再根据绝对值的非负性、偶次方的非负性求出的取值范围,由此即可得出答案.【详解】解:由得:,则,,,解得,又,,,即的取值范围为,故答案为:.【点睛】本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.3、 整式 一个未知数 1【解析】略4、x<3【解析】【分析】由题意分别求出每一个不等式的解集,进而根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式2x-5<1,得:x<3,解不等式x+3<7,得:x<4,∴不等式组的解集为x<3.故答案为:x<3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、或或或或或或或或【解析】【分析】设A,B,C三类疫苗每件的盒数分别为盒,得出甲乙接种点配备A类、B类、C类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.【详解】解:设A,B,C三类疫苗每件的盒数分别为盒,则甲接种点配备A类、B类、C类疫苗的盒数分别为盒,乙接种点配备A类、B类、C类疫苗的盒数分别为,则即①三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒,则,且都为整数解得解得则或即或或解得或皆为整数,若,则,符合题意或为整数,则时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,, ,,,,,,,,故答案为:,,,,,,,,【点睛】本题考查了二元一次方程组,一元一次不等式组的应用,求得的取值范围是解题的关键.三、解答题1、 (1)甲种文具需要20元,一个乙种文具需要10元(2)20【解析】【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:,解得:,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.2、不等式组的解集为:,数轴表示见解析【解析】【分析】首先分别求解不等式,再根据不等式组的性质得到解集,结合数轴的性质作图,即可得到答案.【详解】∵,移项并合并同类项,得:,∵ 去分母,得:移项并合并同类项,得:,∴不等式组的解集为:,将不等式组的解集表示在数轴上如下:.【点睛】本题考查了一元一次不等式组、数轴的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.3、0【解析】【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集即可找出最大整数解.【详解】,解不等式①,得,解不等式②,得,原不等式组的解集为.则其最大整数解为0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、 (1)的值为10,的值为14(2)共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜【解析】【分析】(1)由购进甲种蔬菜15千克和乙种蔬菜20千克的费用=430元;购进甲种蔬菜10千克和乙种蔬菜8千克的费用=212元,再列二元一次方程组解答;(2)利用投入资金不少于1160元又不多于1168元,确定不等关系列一元一次不等式组求解.(1)解:依题意,得:,解得:.答:的值为10,的值为14.(2)解:依题意,得:,解得:.又∵x为正整数,∴可以为58,59,60,∴共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.5、不等式组的正整数解为:【解析】【详解】解: 由①得: 即,解得 由②得: 即 解得: 所以不等式组的解集为: 所以不等式组的正整数解为:【点睛】本题考查的是一元一次不等式组的解法,求解不等式组的正整数解,掌握“解一元一次不等式组的步骤”是解本题的关键,注意不等式组的解集是两个不等式解集的公共部分.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试精练,共17页。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习题,共19页。试卷主要包含了设m为整数,若方程组的解x,,那么,已知关于x等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共23页。试卷主要包含了如果点P,在平面直角坐标系中,点,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。