数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共17页。试卷主要包含了已知x=1是不等式等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.42、不等式的解集为( )A. B. C. D.3、若a>b>0,c>d>0,则下列式子不一定成立的是( )A.a﹣c>b﹣d B. C.ac>bc D.ac>bd4、下列各式中,是一元一次不等式的是( )A.5+4>8 B.2x-1C.2x≤5 D.2x+y>75、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A.10 B.8 C.7 D.46、在数轴上表示不等式的解集正确的是( ).A. B.C. D.7、如果a<b,那么下列不等式中不成立的是( )A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b8、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤19、已知,则下列各式中,不一定成立的是( )A. B. C. D.10、若不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是( )A.m>- B.m<- C.m<- D.m>-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集是_______.2、不等式组的解集为_______.3、 “寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A礼盒混装2千克广味香肠,2千克川味香肠;B礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A、B两种礼盒的总成本最多为______元.4、若实数满足,则的取值范围为___________.5、长方形的一边长是4,另一边长是x+3,它的面积不大于32,则x的取值范围是_______.三、解答题(5小题,每小题10分,共计50分)1、解不等式:2、解不等式组,并写出它的所有整数解.3、求不等式组:的最大整数解.4、解不等式组,并求出它的正整数解.5、解不等式组: ,并把解集在数轴上表示出来. -参考答案-一、单选题1、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.2、D【解析】【分析】首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案.【详解】移项得:,合并同类项得:,将系数化为1得:.故选:D.【点睛】本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键.3、A【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:.当,,,时,,故本选项符合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;故选:A.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、C【解析】【分析】从是否含有不等号,是否含有未知数,未知数的个数是否一个,这个未知数的指数是否为1,四个方面判断即可.【详解】∵5+4>8中,没有未知数,∴不是一元一次不等式,A不符合题意;∵2x-1,没有不等号,∴不是一元一次不等式,B不符合题意;∵2x≤5是一元一次不等式,∴C符合题意;∵2x+y>7中,有两个未知数,∴不是一元一次不等式,D不符合题意;故选C.【点睛】本题考查了一元一次不等式的定义即含有一个未知数且未知数的次数是1的不等式,正确理解定义是解题的关键.5、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.6、C【解析】【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式的解集的是C,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法是解题的关键.7、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.8、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.9、C【解析】【分析】根据不等式的性质进行解答.【详解】解:A、在不等式的两边同时乘以3,不等式仍成立,即,故本选项不符合题意.B、在不等式的两边同时乘以,不等号方向改变,即,故本选项不符合题意.C、,则不一定成立,如当,时,,故本选项符合题意.D、在不等式的两边同时减去1,不等式仍成立,即,所以,故本选项不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10、C【解析】【分析】求出不等式-1≤2-x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【详解】解不等式-1≤2-x,得:x≤,解不等式3(x-1)+5>5x+2(m+x),得:x<,∵不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴>,解得:m<-.故选:C【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.二、填空题1、x<﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组的解集是x<﹣3.故答案为:x<﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.3、36250【解析】【分析】设每千克川味香肠的成本为元,每千克广味香肠的成本为元,先根据利润率的计算公式可得,从而可分别求出每个礼盒的实际成本和核算出的成本,再设礼盒的数量为个,礼盒的数量为个,根据“核算出的成本比实际成本少了500元”可得,从而可得,然后结合求出超巿混装两种礼盒的总成本的最大值即可得.【详解】解:设每千克川味香肠的成本为元,每千克广味香肠的成本为元,由题意得:,即,则每个礼盒的实际成本和核算出的成本均为(元),每个礼盒的实际成本为(元),核算出的成本为(元),设礼盒的数量为个,礼盒的数量为个,由题意得:,即,联立,解得,则超巿混装两种礼盒的总成本为,即超巿混装两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.4、【解析】【分析】先根据已知等式可得,从而可得,再根据绝对值的非负性、偶次方的非负性求出的取值范围,由此即可得出答案.【详解】解:由得:,则,,,解得,又,,,即的取值范围为,故答案为:.【点睛】本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.5、-3<x≤5【解析】【分析】根据长方形面积=长×宽,列出不等式组,解一元一次不等式组即可得出结论.【详解】解:由已知可得:,解得:-3<x≤5.故答案为:-3<x≤5.【点睛】本题考查了一元一次不等式组的应用以及长方形的面积公式,解题的关键是能熟练的解一元一次不等式组.本题属于基础题,难度不大,解决该类题型需根据题意列出正确的一元一次不等式组.三、解答题1、x<-1【解析】【分析】先根据多项式与多项式的乘法法则化简,再根据解不等式的步骤求解.【详解】解:∵∴x2-7x+3x-21+8>x2-x+5x-5,∴x2-7x+3x-x2+x-5x>-5-8+21,∴-8x>8,∴x<-1.【点睛】本题考查了多项式与多项式的乘法法则,以及一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.2、-<x≤2;不等式组的所有整数解为-1,0,1,2.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【详解】解:,解不等式①,得 x≤2,解不等式②,得x>−;∴原不等式组的解集为-<x≤2;∴原不等式组的所有整数解为-1,0,1,2.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3、0【解析】【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集即可找出最大整数解.【详解】,解不等式①,得,解不等式②,得,原不等式组的解集为.则其最大整数解为0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、不等式组的正整数解为:【解析】【详解】解: 由①得: 即,解得 由②得: 即 解得: 所以不等式组的解集为: 所以不等式组的正整数解为:【点睛】本题考查的是一元一次不等式组的解法,求解不等式组的正整数解,掌握“解一元一次不等式组的步骤”是解本题的关键,注意不等式组的解集是两个不等式解集的公共部分.5、x≤2.5,数轴见解析.【解析】【分析】先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.【详解】解:解不等式,得:x<5,解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,则不等式组的解集为x≤2.5,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.
相关试卷
这是一份数学第29章 直线与圆的位置关系综合与测试练习,共30页。试卷主要包含了已知M,如图,等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试测试题,共21页。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习,共19页。试卷主要包含了已知实数x,y满足,下列因式分解正确的是,若a等内容,欢迎下载使用。