冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试单元测试同步测试题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试单元测试同步测试题,共15页。试卷主要包含了不等式组的最小整数解是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则不等式组的解集是( )A. B. C. D.无解2、下列四个说法:①若a=﹣b,则a2=b2;②若|m|+m=0,则m<0;③若﹣1<m<0,则m2<﹣m;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A.4 B.3 C.2 D.13、三角形的三边长分别为2,,5,则x的取值范围是( )A. B. C. D.4、在 ① ;② ;③ ;④ ;⑤ 中,属于不等式的有 A. 个 B. 个 C. 个 D. 个5、如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣cC.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)6、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣27、不等式组的最小整数解是( )A.5 B.0 C. D.8、若a>b>0,c>d>0,则下列式子不一定成立的是( )A.a﹣c>b﹣d B. C.ac>bc D.ac>bd9、若x<y,则下列不等式中不成立的是( )A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y10、如果a>b,那么下列不等式中正确的是( )A.a-b>0 B.ac²>bc² C.c-a>c-b D.a+3<b-3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、列一元一次不等式解应用题的基本步骤:(1)_________:认真审题,分清已知量、未知量;(2)_________:设出适当的未知数;(3)_________:要抓住题中的关键词,如“大于”“小于”“不大于”“不小于”“不超过”“超过”“至少”等.(4)_________:根据题中的不等关系列出不等式;(5)_________:解所列的不等式;(6)答:检验是否符合题意,写出答案2、①-2<0;②2x>3;③2≠3;④2x2-1;⑤x≠-5中是不等式的有____(填序号).3、若减去-(2x-3)所得的差是非负数,用不等式表示:__________.4、不等式的最大整数解是_______.5、不等式的非负整数解是__.三、解答题(5小题,每小题10分,共计50分)1、解不等式:﹣2<.2、在新型冠状病毒疫情影响下,武汉医疗物资紧缺,某机构派甲、乙两种运输车共10辆.已知甲种运输车载重,乙种运输车载重,运往武汉的救援物资不少于,则甲种运输车至少应安排多少辆?3、解不等式组: ,并把解集在数轴上表示出来.4、解不等式组,并写出它的所有正整数解.5、解不等式组,并写出不等式组的整数解 -参考答案-一、单选题1、D【解析】【分析】根据求不等式组的解集方法:“大大小小找不到”判断即可”【详解】若,则不等式组的解集是无解.故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、C【解析】【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.3、D【解析】【分析】三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理列不等式组,再解不等式组即可得到答案.【详解】解: 三角形的三边长分别为2,,5, 由①得: 由②得:所以: 所以x的取值范围是故选D【点睛】本题考查的是三角形三边的关系,掌握“利用三角形的三边关系列不等式组”是解本题的关键.4、C【解析】【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C【点睛】本题考查了不等式的概念,理解不等式的概念是关键.5、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6、B【解析】【分析】观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.7、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、A【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:.当,,,时,,故本选项符合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;故选:A.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、D【解析】【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x<y,∴x-5<y-5,故不符合题意; B. ∵x<y,∴,故不符合题意; C. ∵x<y,∴x-y<0,故不符合题意; D. ∵x<y,∴,故符合题意;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.10、A【解析】【分析】在不等式的两边都加上或减去同一个数或整式,不等号的方向不变,在不等式的两边都乘以或除以同一个正数,不等号的方向不变,在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的基本性质逐一分析即可.【详解】解: a>b, 故A符合题意; a>b,当时, 故B不符合题意; a>b, 故C不符合题意; a>b, 故D不符合题意;故选A【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.二、填空题1、 审题 设未知数 找出题中的不等量关系 列不等式 解不等式【解析】略2、①②③⑤【解析】【分析】根据不等式的定义用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式,依次判断5个式子即可.【详解】解:依据不等式的定义用不等号连接表示不相等关系的式子是不等式,分析可得这5个式子中,①②③⑤是不等式,④是代数式;故答案为:①②③⑤.【点睛】本题属基本概念型的题目,考查不等式的定义,注意x≠-5这个式子,难度不大.3、##【解析】【分析】根据题意由减去-(2x-3)所得的差是非负数,即可列出不等式,解出不等式即可.【详解】解:依题意得:-[-(2x-3)]≥0,即+2x-3≥0.故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式以及整式的加减,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.4、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.5、,1,2【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:,合并同类项得:,故不等式的非负整数解是,1,2.故答案为:x=0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.三、解答题1、x>【解析】【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可.【详解】解:不等式整理得,,去分母,得2(2x+1)-12<3(3x-2).去括号,得4x+2-12<9x-6.移项,得4x-9x<-6+12-2.合并同类项,得-5x<4,系数化为1,得x>.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、甲种运输车至少应安排6辆.【解析】【分析】设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,根据运往武汉的救援物资不少于91t,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,依题意得:10x+8(10−x)≥91,解得:x≥.又∵x为整数,∴x的最小值为6.答:甲种运输车至少应安排6辆.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.3、x≤2.5,数轴见解析.【解析】【分析】先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.【详解】解:解不等式,得:x<5,解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,则不等式组的解集为x≤2.5,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.4、﹣2≤x<3.5,正整数解有:1、2、3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.【详解】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3.【点睛】本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.5、不等式组的解集为,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试单元测试同步测试题,共20页。试卷主要包含了如图,在中,若点使得,则是的等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共18页。试卷主要包含了若,则下列式子一定成立的是,现有甲,下列各数中,是不等式的解的是等内容,欢迎下载使用。
这是一份2021学年第十章 一元一次不等式和一元一次不等式组综合与测试课时作业,共16页。试卷主要包含了若,那么下列各式中正确的是,不等式组的解集在数轴上应表示为,下列说法中错误的是等内容,欢迎下载使用。