搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版七年级数学下册第九章 三角形定向练习试题(含答案解析)

    难点解析冀教版七年级数学下册第九章 三角形定向练习试题(含答案解析)第1页
    难点解析冀教版七年级数学下册第九章 三角形定向练习试题(含答案解析)第2页
    难点解析冀教版七年级数学下册第九章 三角形定向练习试题(含答案解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第九章 三角形综合与测试课后复习题

    展开

    这是一份初中冀教版第九章 三角形综合与测试课后复习题,共21页。
    冀教版七年级数学下册第九章 三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、以下长度的三条线段,能组成三角形的是(       A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,92、如图,在△ABC中,EBC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为(  )A.30° B.45° C.20° D.22.5°3、下列叙述正确的是(       A.三角形的外角大于它的内角 B.三角形的外角都比锐角大C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角4、一把直尺与一块三角板如图放置,若,则       A.120° B.130° C.140° D.150°5、下列长度的三条线段能组成三角形的是(       A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,116、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?(       A.0根 B.1根 C.2根 D.3根7、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为(       A. B. C. D.8、以下列各组线段为边,能组成三角形的是(       A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm9、有下列长度的三条线段,其中能组成三角形的是(       A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,1710、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(       A.50° B.60° C.40° D.30°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点AB在直线l上,点C是直线l外一点,可知CA+CBAB,其依据是 _____.2、已知abc的三条边长,化简的结果为_______.3、在△ABC中,DE分别是BCAD的中点,SABC4cm2,则SABE_____4、一个三角形的其中两个内角为,则这个第三个内角的度数为______.5、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.三、解答题(5小题,每小题10分,共计50分)1、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点MN,使得∠AMN=∠ANM,求证:∠CAM=∠BAN2、已知:直线ABCD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点HABCD之间,而顶点E恰好落在直线CD上时得EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQFH3、如图:已知ABCDBD平分∠ABCAC平分∠BCD,求∠BOC的度数.ABCD(已知),∴∠ABC+       =180°(       ).BD平分∠ABCAC平分∠BCD,(已知),∴∠DBCABC,∠ACBBCD(角平分线的意义).∴∠DBC+∠ACB       )(等式性质),即∠DBC+∠ACB       °.∵∠DBC+∠ACB+∠BOC=180°(       ),∴∠BOC       °(等式性质).4、如图,在直角三角形ABC中,∠BAC=90°,ADBC边上的高,CEAB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:(1)AD的长;(2)△BCE的面积.5、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数. -参考答案-一、单选题1、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.2、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解:ABC与∠ACE的平分线相交于点D 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.3、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.4、B【解析】【分析】BCED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BCEF∴∠2=∠CBD又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.5、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意;       C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意;       D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.6、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.7、A【解析】【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.8、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.9、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,,不能够组成三角形,不符合题意;,不能够组成三角形,不符合题意;,能够组成三角形,符合题意;,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.二、填空题1、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点AB在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CBAB故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.2、2b【解析】【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵abc的三条边长,a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b故答案为:2b【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3、1cm2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】DBC的中点,SABC4cm2SABDSABC×42cm2EAD的中点,SABESABD×21cm2故答案为:1cm2【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.4、60°##60度【解析】【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:∴ 第三个角为:故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;5、20【解析】【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.三、解答题1、(1)∠BED=∠B+∠D;(2)证明见详解.【解析】【分析】(1)作EFAB,证明ABEFCD,得到∠B=∠BEF,∠D=∠DEF,即可证明∠BED=∠B+∠D(2)根据(1)结论得到∠N=∠BAN+∠DCN,进而得到∠AMN=∠BAN+∠DCN,根据三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根据∠DCN=∠CAN,即可证明∠CAM=∠BAN【详解】解:如图1,作EFABABCDABEFCD∴∠B=∠BEF,∠D=∠DEF∵∠BED=∠BEF+∠DEF∴∠BED=∠B+∠D(2)证明:∵ABCD∴由(1)得∠N=∠BAN+∠DCN∵∠AMN=∠ANM∴∠AMN=∠BAN+∠DCN∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM∴∠BAN+∠DCN=∠ACM+∠CAMCN平分∠ACD∴∠DCN=∠CAN∴∠CAM=∠BAN【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键.2、 (1)140°(2)E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+MHE(3)见解析【解析】【分析】(1)根据平行线的性质得1=∠CHG,再由平角的定义得CHG+EHF+2180°,进一步求出∠1的度数即可;(2)由平行线的性质得AFE=∠CME,由三角形外角性质得CME=∠E+MHE,从而求得结论;(3)设∠AFEx,则∠BFH90°﹣x,∠EFB180°﹣x.由平行线的性质和三角形外角性质得∠HFT=∠BFT﹣∠BFHx,故可得Q15°+x.再证明∠CEH210°﹣x.∠QEH105°﹣x,由Q+QEH+QPE180°得15°+x+105°﹣x+QPE180°求得∠QPE60°,从而∠QPE=∠H故可得结论.(1)ABCD∴∠1=∠CHG∵∠221∴∠22CHG∵∠CHG+EHF+2180°,3CHG+60°=180°.∴∠CHG40°.∴∠140°.(2)E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+MHE,理由:ABCD∴∠AFE=∠CME∵∠CME=∠E+MHE∴∠AFE=∠E+MHE(3)证明:设∠AFEx,则∠BFH90°﹣x,∠EFB180°﹣xABCD∴∠BFT=∠ETF∵∠EFT=∠ETF∴∠EFT=∠BFTEFB90°﹣x∴∠HFT=∠BFT﹣∠BFHx∵∠Q﹣∠HFT15°,∴∠Q15°+xABCD∴∠AFE+CEF180°.∴∠CEF180°﹣x∴∠CEH=∠CEF+FEH180°﹣x+30°=210°﹣xEQ平分∠CEH∴∠QEHCEH105°﹣x∵∠Q+QEH+QPE180°,15°+x+105°﹣x+QPE180°.∴∠QPE60°.∵∠H60°,∴∠QPE=∠HPQFH【点睛】本题属于几何变换综合题,考查了平行线的性质与判定,三角形内角和定理等知识,正确的识别图形是解题的关键.3、BCD,两直线平行,同旁内角互补,∠ABC+BCD90,三角形内角和等于180°,90【解析】【分析】根据题意利用ABCD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵ABCD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),BD平分∠ABCAC平分∠BCD(已知),∴∠DBCABC,∠ACBBCD(角平分线定义),∴∠DBC+∠ACB(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.4、(1);(2)48.【解析】【分析】(1)利用面积法得到ADBCABAC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分,所以SBCESABC【详解】解:(1)∵∠BAC=90°,ADBC边上的高,ADBCABACAD(cm);(2)∵CEAB边上的中线,SBCESABC××12×16=48(cm2).【点睛】本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.5、 (1)(2)【解析】【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得.(1)解:∵AD是角平分线,(2)【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键. 

    相关试卷

    初中数学冀教版七年级下册第九章 三角形综合与测试同步达标检测题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步达标检测题,共22页。试卷主要包含了下列各图中,有△ABC的高的是等内容,欢迎下载使用。

    冀教版七年级下册第九章 三角形综合与测试当堂达标检测题:

    这是一份冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共25页。试卷主要包含了如图,,,则的度数是,如图,在中,AD等内容,欢迎下载使用。

    2021学年第九章 三角形综合与测试随堂练习题:

    这是一份2021学年第九章 三角形综合与测试随堂练习题,共19页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map